Landscape Ecology

, Volume 33, Issue 9, pp 1617–1631 | Cite as

Investigating landscape phase transitions in Mediterranean rangelands by recurrence analysis

  • Giovanni ZurliniEmail author
  • Norbert Marwan
  • Teodoro Semeraro
  • K. Bruce Jones
  • Roberta Aretano
  • Maria Rita Pasimeni
  • Donatella Valente
  • Christian Mulder
  • Irene Petrosillo
Research Article



Socio-ecological landscapes typically characterized by non-linear dynamics in space and time are difficult to be analyzed using standard quantitative methods, due to multiple processes interacting on different spatial and temporal scales. This poses a challenge to the identification of appropriate approaches for analyzing time series that can evaluate system properties of landscape dynamics in the face of disturbances, such as uncontrolled fires.


The purpose is the application of non-linear methods such as recurrence quantification analysis (RQA) to landscape ecology. The examples concern the time series of burnt and unburnt Mediterranean rangelands, to highlight potential and limits of RQA.


We used RQA together with joint recurrence analysis (JRA) to compare the evolutionary behavior of different land uses.


Time series of forests and grasslands in rangelands present both periodic and chaotic components with a rather similar behavior after the fire and clear transitions from less to more regular/predictable dynamics/succession. Results highlight the impacts of fire, the recovery capacity of land covers to pre-burnt levels, and the decay of synchronization towards the previous regime associated with vegetation secondary succession consistent with early successional species.


RQA and JRA with their set of indices (recurrence rate: RR, laminarity: LAM, determinism: DET, and divergence: DIV) can represent new sensitive measures that may monitor the adaptive capacity and the resilience of landscapes. However, future applications are needed to standardize the analysis by strengthening the accuracy of this approach in describing the ongoing transformations of natural and man-managed landscapes.


Recurrence quantification analysis (RQA) Non-linear analysis Enhanced Vegetation Index (EVI) Fire disturbance Predictability Secondary succession 



Piero Medagli is gratefully acknowledged for his suggestions and field surveys as well as the three anonymous reviewers for their useful suggestions and comments that have strongly improved the original version of the manuscript. We also acknowledge the ERASMUS funding program and one DFG Grant to N. Marwan (RTG 2043/1, Natural Hazards and Risks in a Changing World).

Supplementary material

10980_2018_693_MOESM1_ESM.docx (127 kb)
Supplementary material 1 (DOCX 128 kb)


  1. Antrop M (2005) Why landscapes of the past are important for the future. Landscape Urban Plan 70:21–34CrossRefGoogle Scholar
  2. Avery J (2003) Information theory and evolution. World Scientific Publishing Company, Hackensack, NJCrossRefGoogle Scholar
  3. Avi P, No’am GS (1998) Role of grazing in Mediterranean rangeland ecosystems. BioScience 48: 1007-1017Google Scholar
  4. Berkes F, Colding J, Folke C (2003) Navigating social-ecological systems: building resilience for complexity and change. Cambridge University Press, CambridgeGoogle Scholar
  5. Biondi E, Casavecchia S, Beccarisi L, Marchiori S, Medagli P, Zuccarello V (2010) Le serie di vegetazione della Regione Puglia. In: Blasi C (ed) La vegetazione d’Italia. Palombi, Rome, pp 391–409Google Scholar
  6. Casdagli MC (1997) Recurrence plots revisited. Physics D 108(1–2):12–44CrossRefGoogle Scholar
  7. Chen X, Li B-L, Collins LS (2005) Multiscale monitoring of a multispecies case study: two grass species at Sevilleta. Plant Ecol 179:149–154CrossRefGoogle Scholar
  8. Donges JF, Donner RV, Trauth MH, Marwan N, Schellnhuber H-J, Kurths J (2011) Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc Natl Acad Sci USA 108:20422–20427CrossRefPubMedGoogle Scholar
  9. Eckmann J-P, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977CrossRefGoogle Scholar
  10. Ekström M (2003) Quantifying spatial patterns of landscapes. Ambio 32:573–576CrossRefPubMedGoogle Scholar
  11. Goetz SJ, Bunn AG, Fiske GJ, Houghton RA (2005) Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102:13521–13525CrossRefPubMedGoogle Scholar
  12. Guimarães-Filho ZO, Caldas IL, Viana RL, Nascimento IC, Kuznetsov YK, Kurths J (2010) Recurrence quantification analysis of turbulent fluctuations in the plasma edge of Tokamak Chauffage Alfvén Brésilien tokamak. Phys Plasmas 17:012303CrossRefGoogle Scholar
  13. Hart SA, Chen HYH (2007) Understory vegetation dynamics of north American boreal forests. Crit Rev Plant Sci 25:381–397CrossRefGoogle Scholar
  14. Keeley JE (1986) Resilience of mediterranean shrub communities to fire. In: Dell B, Hopkins ALM, Lamont BB (eds) Resilience in mediterranean-type ecosystems. Springer, Dordrecht, pp 95–112CrossRefGoogle Scholar
  15. Kolars J (1966) Locational aspects of cultural ecology—the case of the goat in non-western agriculture. Geogr Rev 56:577–584CrossRefGoogle Scholar
  16. Ladisa G, Todorovic M, Trisorio Liuzzi G (2012) A GIS-based approach for desertification risk assessment in Apulia region, SE Italy. Phys Chem Earth 49:103–113CrossRefGoogle Scholar
  17. Levin SA (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431–436CrossRefGoogle Scholar
  18. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  19. Marwan N (2008) A historical review of recurrence plots. Eur Phys J Spec Top 164:3–12CrossRefGoogle Scholar
  20. Marwan N (2010) How to avoid potential pitfalls in recurrence plot based data analysis. Int J Bifurcat Chaos 21:1003CrossRefGoogle Scholar
  21. Marwan N, Kurths J, Foerster S (2015) Analysing spatially extended high-dimensional dynamics by recurrence plots. Phys Lett A 379:894–900CrossRefGoogle Scholar
  22. Marwan N, Romano MC, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438:237–329CrossRefGoogle Scholar
  23. Marwan N, Thiel M, Nowaczyk NR (2002) Cross recurrence plot based synchronization of time series. Nonlinear Proc Geoph 9(3/4):325–331CrossRefGoogle Scholar
  24. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington, DCGoogle Scholar
  25. Milne BT (1998) Motivation and benefits of complex systems approaches in ecology. Ecosystems 1:449–456CrossRefGoogle Scholar
  26. Moloney KA, Levin SA (1996) The effects of disturbance architecture on landscape level population dynamics. Ecology 77:375–394CrossRefGoogle Scholar
  27. Mulder C, Bennett EM, Bohan DA, Bonkowski M, Carpenter SR, Chalmers R, Cramer W, Durance I, Eisenhauer N, Fontaine C, Haughton AJ, Hettelingh J-P, Hines J, Ibanez S, Jeppesen E, Krumins JA, Ma A, Mancinelli G, Massol F, McLaughlin Ó, Naeem S, Pascual U, Peñuelas J, Pettorelli N, Pocock MJO, Raffaelli D, Rasmussen JJ, Rusch GM, Scherber C, Setälä H, Sutherland WJ, Vacher C, Voigt W, Vonk JA, Wood SA, Woodward G (2015) 10 years later: Revisiting priorities for science and society a decade after the Millennium Ecosystem Assessment. Adv Ecol Res 53:1–53CrossRefGoogle Scholar
  28. Müller F, Bergmann M, Dannowski R, Dippner JW, Gnauck A, Haase P, Jochimsen MC, Kasprzak P, Kröncke I, Kümmerlin R, Küster M, Lischeid G, Meesenburg H, Merz C, Millat G, Müller J, Padisák J, Schimming CG, Schubert H, Schult M, Selmeczy G, Shatwell T, Stoll S, Schwabe M, Soltwedel T, Straile D, Theuerkauf M (2016) Assessing resilience in long-term ecological data sets. Ecol Indic 65:10–43CrossRefGoogle Scholar
  29. Naveh Z, Dan J (1973) The human degradation of Mediterranean landscapes in Israel. In: Di Castri F, Mooney HA (eds) Mediterranean-type ecosystems origin and structure. Springer, Berlin, pp 373–390CrossRefGoogle Scholar
  30. Noble IR, Slatyer RO (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43:5–21CrossRefGoogle Scholar
  31. Parrot L (2010) Measuring ecological complexity. Ecol Indic 10:1069–1076CrossRefGoogle Scholar
  32. Parrott L (2005) Quantifying the complexity of simulated spatiotemporal population dynamics. Ecol Complex 2:175–184CrossRefGoogle Scholar
  33. Peterson GD (2002) Estimating resilience across landscapes. Conserv Ecol 6(1):17.
  34. Petrosillo I, Semeraro T, Zaccarelli N, Aretano R, Zurlini G (2013) The possible combined effects of land-use changes and climate conditions on the spatial–temporal patterns of primary production in a natural protected area. Ecol Indic 29:367–375CrossRefGoogle Scholar
  35. Proulx R, Côté P, Parrott L (2009) Multivariate recurrence plots for visualizing and quantifying the dynamics of spatially extended ecosystems. Ecol Complex 6:37–47CrossRefGoogle Scholar
  36. Proulx R, Parrott L (2009) Structural complexity in digital images as an ecological indicator for monitoring forest dynamics across scale, space and time. Ecol Indic 9:1248–1256CrossRefGoogle Scholar
  37. Pueyo Y, Alados CL (2007) Effects of fragmentation, abiotic factors and land use on vegetation recovery in a semi-arid Mediterranean area. Basic Appl Ecol 8:158–170CrossRefGoogle Scholar
  38. Quinn RD (1994) Animals, fire, and vertebrate herbivory in Californian chaparral and other Mediterranean-type ecosystems. In: Oechel WC, Moreno JM (eds) The role of fire in Mediterranean-type ecosystems. Springer, New York, pp 46–78CrossRefGoogle Scholar
  39. Ramos AMT, Builes-Jaramillo A, Poveda G, Goswami B, Macau EEN, Kurths J, Marwan N (2017) Recurrence measure of conditional dependence and applications. Phys Rev E 95:052206CrossRefPubMedGoogle Scholar
  40. Röder A, Hill J, Duguy B, Alloza JA, Vallejo R (2008) Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sens Environ 112:259–273CrossRefGoogle Scholar
  41. Romano M, Thiel M, Kurths J, Von Bloh W (2004) Multivariate recurrence plots. Phys Lett A 330:214–223CrossRefGoogle Scholar
  42. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59CrossRefPubMedGoogle Scholar
  43. Storch D, Gaston KJ (2004) Untangling ecological complexity on different scales of space and time. Basic Appl Ecol 5:389–400CrossRefGoogle Scholar
  44. Thiel M, Romano MC, Kurths J, Meucci R, Allaria E, Arecchi FT (2002) Influence of observational noise on the recurrence quantification analysis. Phys D 171(3):138–152CrossRefGoogle Scholar
  45. Trulla LL, Giuliani A, Zbilut JP, Webber CL Jr (1996) Recurrence quantification analysis of the logistic equation with transients. Phys Lett A 223(4):255–260CrossRefGoogle Scholar
  46. Ulanowicz RE (2001) Information theory in ecology. Comput Chem 25:393–399CrossRefPubMedGoogle Scholar
  47. USGS (2014) USGS global visualization viewer. Accessed 10 Dec, 2014
  48. von Bloh W, Romano MC, Thiel M (2005) Long-term predictability of mean daily temperature data. Nonlinear Proc Geoph 12(4):471–479CrossRefGoogle Scholar
  49. Walker B, Carpenter S, Anderies J, Abel N, Cumming G, Janssen M, Lebel L, Norberg J, Peterson GD, Pritchard R (2002) Resilience management in social-ecological systems: A working hypothesis for a participatory approach. Conserv Ecol 6:14.
  50. Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9(2):5.
  51. Walker BH, Salt D (2006) Resilience thinking: sustaining ecosystems and people in a changing world. Island Press, Washington, D.C.Google Scholar
  52. Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore B III (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–534CrossRefGoogle Scholar
  53. Zaccarelli N, Li B-L, Petrosillo I, Zurlini G (2013) Order and disorder in ecological time series: introducing normalized spectral entropy. Ecol Indic 28:22–30CrossRefGoogle Scholar
  54. Zaccarelli N, Petrosillo I, Zurlini G, Riitters KH (2008) Source/sink patterns of disturbance and cross-scale effects in a panarchy of social-ecological landscapes. Ecol Soc 13:26.
  55. Zbilut JP, Giuliani A, Webber CL Jr (2000) Recurrence quantification analysis as an empirical test to distinguish relatively short deterministic versus random number series. Phys Lett A 267:174–178CrossRefGoogle Scholar
  56. Zhao Z, Liu J, Peng J, Li S, Wang Y (2015) Nonlinear features and complexity patterns of vegetation dynamics in the transition zone of North China. Ecol Indic 49:237–246CrossRefGoogle Scholar
  57. Zurlini G, Li B-L, Zaccarelli N, Petrosillo I (2014a) Spectral entropy, ecological resilience, and adaptive capacity for understanding, evaluating, and managing ecosystem stability and change. Glob Change Biol 21:1377–1378CrossRefGoogle Scholar
  58. Zurlini G, Petrosillo I, Aretano R, Castorini I, D’Arpa S, De Marco A, Pasimeni MR, Semeraro T, Zaccarelli N (2014b) Key fundamental aspects for mapping and assessing ecosystem services: predictability of ecosystem service providers at scales from local to global. Ann Bot 4:53–63Google Scholar
  59. Zurlini G, Riitters KH, Zaccarelli N, Petrosillo I (2007) Patterns of disturbance at multiple scales in real and simulated landscapes. Landscape Ecol 22:705–721CrossRefGoogle Scholar
  60. Zurlini G, Zaccarelli N, Petrosillo I (2006) Indicating retrospective resilience of multi-scale patterns of real habitats in a landscape. Ecol Indic 6:184–204CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Giovanni Zurlini
    • 1
    Email author
  • Norbert Marwan
    • 2
  • Teodoro Semeraro
    • 3
  • K. Bruce Jones
    • 4
  • Roberta Aretano
    • 5
  • Maria Rita Pasimeni
    • 1
  • Donatella Valente
    • 1
  • Christian Mulder
    • 6
  • Irene Petrosillo
    • 1
  1. 1.Laboratory of Landscape Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
  2. 2.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  3. 3.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
  4. 4.Desert Research InstituteLas VegasUSA
  5. 5.Department of FoggiaRegional Environmental Protection Agency of ApuliaBariItaly
  6. 6.Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly

Personalised recommendations