Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach

Abstract

Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

AC:

Alternating current

CFD:

Computational fluid dynamics

HEV:

Hybrid electric vehicle

LIB:

Lithium-ion battery

PCM:

Phase change material

PPI:

Pores per inch

TMS:

Thermal management system

c p :

Specific heat (kJ kg−1 K−1)

d :

Diameter (m)

h :

Enthalpy (kJ)

\(k_{\text{B}}\) :

Boltzmann’s constant \(= 1.38066 \times 10^{ - 23} \,{\text{J}}\,{\text{K}}^{ - 1}\)

K :

Thermal conductivity (W m−1 K−1)

p :

Pressure (kPa)

\(P\) :

Power (W)

Pr:

Prandtl number

\(R\) :

Electrical resistance (Ω)

Re:

Reynolds number

T :

Temperature (K)

u :

Velocity (m s−1)

\(V\) :

Supplied voltage (V)

VF:

Volume fraction

\(\Delta H\) :

Sensible heat (kJ)

\(\beta\) :

Melting amount

\(\gamma\) :

Latent heat (kJ)

\(\rho\) :

Mass density (kg m−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\varepsilon\) :

Porosity (–)

\(\omega\) :

Pore density (pores per inch, PPI)

eff:

Effective

f:

Base fluid

fr:

Freezing point

i, j, k:

Indices for xyz direction

p:

Nanoparticles

s:

Sensible

References

  1. 1.

    Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. Global temperature change. Proc Natl Acad Sci. 2006;103(39):14288–93. https://doi.org/10.1073/pnas.0606291103.

  2. 2.

    Bistline JE, Rai V. The role of carbon capture technologies in greenhouse gas emissions-reduction models: a parametric study for the U.S. power sector. Energy Policy. 2010;38(2):1177–91. https://doi.org/10.1016/j.enpol.2009.11.008.

  3. 3.

    Sources of Greenhouse Gas Emissions. US EPA. 2019. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. Accessed 14 Dec 2019.

  4. 4.

    Gurney KR, Razlivanov I, Song Y, Zhou Y, Benes B, Abdul-Massih M. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city. Environ Sci Technol. 2012;46(21):12194–202. https://doi.org/10.1021/es3011282.

  5. 5.

    Hertzke P, Müller N, Schaufuss P, Schenk S, Wu T. Expanding electric-vehicle adoption despite early growing pains. McKinsey & Company. 2019. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-despite-early-growing-pains. Accessed 14 Dec 2019.

  6. 6.

    Mehrabi-Kermani M, Houshfar E, Ashjaee M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection. Int J Therm Sci. 2019;141:47–61. https://doi.org/10.1016/j.ijthermalsci.2019.03.026.

  7. 7.

    Panchal S, Mathewson S, Fraser R, Culham R, Fowler M. Thermal management of lithium-ion pouch cell with indirect liquid cooling using dual cold plates approach. Warrendale: SAE International; 2015.

  8. 8.

    Hannan MA, Hoque MM, Mohamed A, Ayob A. Review of energy storage systems for electric vehicle applications: issues and challenges. Renew Sust Energy Rev. 2017;69:771–89. https://doi.org/10.1016/j.rser.2016.11.171.

  9. 9.

    Väyrynen A, Salminen J. Lithium ion battery production. J Chem Thermodyn. 2012;46:80–5. https://doi.org/10.1016/j.jct.2011.09.005.

  10. 10.

    Chen W-C, Li J-D, Shu C-M, Wang Y-W. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121(1):525–31. https://doi.org/10.1007/s10973-015-4672-3.

  11. 11.

    Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132(1):65–75. https://doi.org/10.1007/s10973-017-6888-x.

  12. 12.

    Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 2013;226:272–88. https://doi.org/10.1016/j.jpowsour.2012.10.060.

  13. 13.

    Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim. 2016;124(1):417–28. https://doi.org/10.1007/s10973-015-5100-4.

  14. 14.

    Pesaran AA, editor. Battery thermal management in EVs and HEVs: issues and solutions. In: Advanced automotive battery conference; 2001; Las Vegas, Nevada, USA.

  15. 15.

    Pesaran AA, Vlahinos A, Burch SD. Thermal performance of EV and HEV battery modules and packs. Golden, CO, USA1997. Report no.: NREL/CP-540-23527.

  16. 16.

    Sabbah R, Kizilel R, Selman JR, Al-Hallaj S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources. 2008;182(2):630–8. https://doi.org/10.1016/j.jpowsour.2008.03.082.

  17. 17.

    Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources. 2011;196(13):5685–96. https://doi.org/10.1016/j.jpowsour.2011.02.076.

  18. 18.

    Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources. 2013;239:30–6. https://doi.org/10.1016/j.jpowsour.2013.03.102.

  19. 19.

    Kim G-H, Pesaran A. Battery thermal management design modeling. World Electr Veh J. 2007;1(1):126–33. https://doi.org/10.3390/wevj1010126.

  20. 20.

    Tran T-H, Harmand S, Sahut B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery. J Power Sources. 2014;265:262–72. https://doi.org/10.1016/j.jpowsour.2014.04.130.

  21. 21.

    Rao Z, Wang S, Wu M, Lin Z, Li F. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers Manag. 2013;65:92–7. https://doi.org/10.1016/j.enconman.2012.08.014.

  22. 22.

    Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31. https://doi.org/10.1016/j.enconman.2016.08.063.

  23. 23.

    Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl Therm Eng. 2017;123:1514–22. https://doi.org/10.1016/j.applthermaleng.2017.06.059.

  24. 24.

    Fang G, Huang Y, Yuan W, Yang Y, Tang Y, Ju W, et al. Thermal management for a tube–shell Li-ion battery pack using water evaporation coupled with forced air cooling. RSC Adv. 2019;9(18):9951–61. https://doi.org/10.1039/C8RA10433F.

  25. 25.

    Wu M-S, Liu KH, Wang Y-Y, Wan C-C. Heat dissipation design for lithium-ion batteries. J Power Sources. 2002;109(1):160–6. https://doi.org/10.1016/S0378-7753(02)00048-4.

  26. 26.

    Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J Power Sources. 2015;273:1089–97. https://doi.org/10.1016/j.jpowsour.2014.10.007.

  27. 27.

    Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Numerical modeling and experimental investigation of a prismatic battery subjected to water cooling. Numer Heat Transf A Appl. 2017;71(6):626–37. https://doi.org/10.1080/10407782.2016.1277938.

  28. 28.

    Liang J, Gan Y, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manag. 2018;155:1–9. https://doi.org/10.1016/j.enconman.2017.10.063.

  29. 29.

    Mahdavi M, Tiari S, Pawar V. A numerical study on the combined effect of dispersed nanoparticles and embedded heat pipes on melting and solidification of a shell and tube latent heat thermal energy storage system. J Energy Storage. 2020;27:101086. https://doi.org/10.1016/j.est.2019.101086.

  30. 30.

    Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int J Heat Mass Transf. 2019;145:118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739.

  31. 31.

    Safdari M, Ahmadi R, Sadeghzadeh S. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy. 2020;193:116840. https://doi.org/10.1016/j.energy.2019.116840.

  32. 32.

    Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci. 2015;90:79–89. https://doi.org/10.1016/j.ijthermalsci.2014.11.023.

  33. 33.

    Baby R, Balaji C. Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int J Heat Mass Transf. 2012;55(5):1642–9. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.020.

  34. 34.

    Yang X, Guo Z, Liu Y, Jin L, He Y-L. Effect of inclination on the thermal response of composite phase change materials for thermal energy storage. Appl Energy. 2019;238:22–33. https://doi.org/10.1016/j.apenergy.2019.01.074.

  35. 35.

    Yang X, Yu J, Guo Z, Jin L, He Y-L. Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube. Appl Energy. 2019;239:142–56. https://doi.org/10.1016/j.apenergy.2019.01.075.

  36. 36.

    Yang X, Wei P, Cui X, Jin L, He Y-L. Thermal response of annuli filled with metal foam for thermal energy storage: an experimental study. Appl Energy. 2019;250:1457–67. https://doi.org/10.1016/j.apenergy.2019.05.096.

  37. 37.

    Yang X, Yu J, Xiao T, Hu Z, He Y-L. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam. Appl Energy. 2020;261:114385. https://doi.org/10.1016/j.apenergy.2019.114385.

  38. 38.

    Al Hallaj S, Selman JR. A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc. 2000;147(9):3231–6. https://doi.org/10.1149/1.1393888.

  39. 39.

    Wang Z, Li X, Zhang G, Lv Y, Wang C, He F, et al. Thermal management investigation for lithium-ion battery module with different phase change materials. RSC Adv. 2017;7(68):42909–18. https://doi.org/10.1039/C7RA08181B.

  40. 40.

    Karimi G, Azizi M, Babapoor A. Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites. J Energy Storage. 2016;8:168–74. https://doi.org/10.1016/j.est.2016.08.005.

  41. 41.

    Hussain A, Abidi IH, Tso CY, Chan KC, Luo Z, Chao CYH. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci. 2018;124:23–35. https://doi.org/10.1016/j.ijthermalsci.2017.09.019.

  42. 42.

    Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources. 2017;340:51–9. https://doi.org/10.1016/j.jpowsour.2016.11.018.

  43. 43.

    Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135(2):947–61. https://doi.org/10.1007/s10973-018-7335-3.

  44. 44.

    Ramezanpour M, Siavashi M. Application of SiO2–water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2019;135(1):565–80. https://doi.org/10.1007/s10973-018-7156-4.

  45. 45.

    Rabbani P, Hamzehpour A, Ashjaee M, Najafi M, Houshfar E. Experimental investigation on heat transfer of MgO nanofluid in tubes partially filled with metal foam. Powder Technol. 2019;354:734–42. https://doi.org/10.1016/j.powtec.2019.06.037.

  46. 46.

    Ranjbaran YS, Haghparast SJ, Shojaeefard MH, Molaeimanesh GR. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08989-w.

  47. 47.

    Zhang J, Li X, He F, He J, Zhong Z, Zhang G. Experimental investigation on thermal management of electric vehicle battery module with paraffin/expanded graphite composite phase change material. Int J Photoenergy. 2017;2017:8. https://doi.org/10.1155/2017/2929473.

  48. 48.

    Zhao R, Zhang S, Liu J, Gu J. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources. 2015;299:557–77. https://doi.org/10.1016/j.jpowsour.2015.09.001.

  49. 49.

    Wang Y-W, Jiang J-M, Chung Y-H, Chen W-C, Shu C-M. Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes. J Therm Anal Calorim. 2019;135(5):2891–901. https://doi.org/10.1007/s10973-018-7646-4.

  50. 50.

    Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy. 2015;148:403–9. https://doi.org/10.1016/j.apenergy.2015.03.080.

  51. 51.

    Zhao Y, Zou B, Li C, Ding Y. Active cooling based battery thermal management using composite phase change materials. Energy Proc. 2019;158:4933–40. https://doi.org/10.1016/j.egypro.2019.01.697.

  52. 52.

    Mancin S, Zilio C, Diani A, Rossetto L. Air forced convection through metal foams: experimental results and modeling. Int J Heat Mass Transf. 2013;62:112–23. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.050.

  53. 53.

    McKinney BL, Wierschem GL, Mrotek EN. Thermal management of lead-acid batteries for electric vehicles. Warrendale: SAE International Congress and Exposition, SAE International; 1983.

  54. 54.

    Liu G, Ouyang M, Lu L, Li J, Han X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116(2):1001–10. https://doi.org/10.1007/s10973-013-3599-9.

  55. 55.

    Galushkin NE, Yazvinskaya NN, Galushkin DN. Mechanism of thermal runaway in lithium-ion cells. J Electrochem Soc. 2018;165(7):A1303–8. https://doi.org/10.1149/2.0611807jes.

  56. 56.

    Liu J, Wang Z, Gong J, Liu K, Wang H, Guo L. Experimental study of thermal runaway process of 18650 lithium-ion battery. Materials. 2017;10(3):230. https://doi.org/10.3390/ma10030230.

  57. 57.

    Adio SA, Sharifpur M, Meyer JP. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2016;11(8):630–49. https://doi.org/10.1080/17458080.2015.1107194.

  58. 58.

    Osman S, Sharifpur M, Meyer JP. Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide–water nanofluids in a rectangular channel. Int J Heat Mass Transf. 2019;133:895–902. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.169.

  59. 59.

    Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71. https://doi.org/10.1016/j.ijthermalsci.2008.03.009.

  60. 60.

    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93. https://doi.org/10.1016/j.enconman.2010.06.072.

Download references

Author information

Correspondence to Ehsan Houshfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Ansari, M., Arshadi, A.A. et al. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09403-6

Download citation

Keywords

  • Computational fluid dynamics
  • Thermal management
  • Battery
  • Nanofluid
  • Metal foam