Advertisement

Melting process of paraffin wax inside plate heat exchanger: experimental and numerical study

Abstract

In this paper, an experimental and numerical study has been performed on melting process of commercial Iranian paraffin wax, with melting temperature of about 60 °C, inside a plate heat exchanger. A 500 × 100 mm plate thermal storage system and 22 mm thick phase change material has been designed. Experimental and numerical results are compared with each other in three different inlet temperatures of heat transfer fluid (HTF), which are 343, 348, and 353 K, and three different volume flow rates, which are 15, 30, are 45 L min−1. The temperature contours of paraffin wax at various time steps are presented to investigate the conduction and convection effects of melting process with respect to time. It has been shown that the melting rate of paraffin wax is higher at the upper part of the system due to the presence of natural convection. Results showed that increasing HTF temperature enhances the amount of heat transfer and reduces the melting time up to 37%. Also, by increasing volume flow rate of HTF, the melting time reduced up to 0.9%.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Abbreviations

C P :

Specific heat of capacity (J kg−1 K−1)

\( \vec{g} \) :

Gravity vector (m s−2)

h :

Sensible enthalpy (J kg−1)

H :

Total enthalpy (J kg−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Latent heat (J kg−1)

P :

Pressure (N m−2)

\( \vec{S} \) :

Source term

t :

Time (min)

T :

Temperature (K)

\( \vec{V} \) :

Velocity vector (m s−1)

W :

Width (mm)

β :

Volumetric expansion coefficient (K−1)

λ :

Liquid fraction

μ :

Viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

σ :

Standard deviation

ave:

Average

Ex:

Experimental

h:

Hot water

HTF:

Heat transfer fluid

i:

Independent variable

liq:

Liquid

m:

Melting

mush:

Mushy zone

n:

Numerical

o:

Initial state

PCM:

Phase change material

R:

Linear function

ref:

Reference value

s:

Solid

References

  1. 1.

    International Energy Agency (IEA) Technology roadmap: energy storage. 2014.

  2. 2.

    Jegadheeswaran S, Pohekar S, Kousksou T. Exergy, Based performance evaluation of latent heat thermal storage system: a review. Renew Sustain Energy Rev. 2010;14(25):80–95.

  3. 3.

    Rashidi S, Akar S, Bovand M, Ellahi R. volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10. https://doi.org/10.1016/j.renene.2017.08.059.

  4. 4.

    Esfahani JA, Akbarzadeh M, Rashidi S, Rosen MA, Ellahi R. Influences of wavy wall and nanoparticles on entropy generation over heat exchanger plat. Int J Heat Mass Transf. 2017;109:1162–71. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.006.

  5. 5.

    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132:1189–200. https://doi.org/10.1007/s10973-017-6907-y.

  6. 6.

    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2017;131:1–13. https://doi.org/10.1007/s10973-017-6773-7.

  7. 7.

    Asadollahi A, Rashidi S, Esfahani JA, Ellahi R. Simulation phase change during the droplet deformation and impact on a wet surface in a square microchannel: an application of oil drops collision. Eur Phys J Plus. 2018;133:306. https://doi.org/10.1140/epjp/i2018-12135-6.

  8. 8.

    Nakhchi ME, Esfahani JA. Entropy generation of turbulent Cu-water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2019;138:1423–36. https://doi.org/10.1007/s10973-019-08169-w.

  9. 9.

    Nakhchi ME, Esfahani JA. Numerical investigation of different geometrical parameters of perforated conical rings on flow structure and heat transfer in heat exchangers. Appl Therm Process. 2019;156:494–505. https://doi.org/10.1016/j.applthermaleng.2019.04.067.

  10. 10.

    Nakhchi ME, Esfahani JA. Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts. Chem Eng Process. 2019;141:1–40. https://doi.org/10.1016/j.cep.2019.107533.

  11. 11.

    Nakhchi ME, Esfahani JA. Sensitivity analysis of a heat exchanger tube fitted with cross-cut twisted tape with alternate axis. J Heat Transfer. 2019;141:1–34. https://doi.org/10.1115/1.4042780.

  12. 12.

    Nakhchi ME, Esfahani JA. Numerical investigation of heat transfer enhancement inside heat exchanger tubes fitted with perforated hollow cylinders. Int J Therm Sci. 2020;147:1–9. https://doi.org/10.1016/j.ijthermalsci.2019.106153.

  13. 13.

    Milani KS, Mamourian M, Mirzakhanlari S, Rahimi AB, Ellahi R. Numerical study of surface radiation and combined natural convection heat transfer in a solar cavity receiver. Int J Numer Methods Heat Fluid Flow. 2017;27:2385–99. https://doi.org/10.1108/HFF-10-2016-0149.

  14. 14.

    Hassan M, Marin M, Alsharif A, Ellahi R. Convective heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382:2749–53. https://doi.org/10.1016/jphysleta.2018.06.026.

  15. 15.

    Hassan M, Ellahi R, Zeeshan A, Bhatti MM. Analysis of natural convective flow of non-Newtonian fluid under the effects of nanoparticles of different materials. J Process Mech Eng. 2018;233:643–52. https://doi.org/10.1177/0954408918787122.

  16. 16.

    Nazari S, Ellahi R, Sarafraz MM, Safaei MR, Asgari A, Akbari OA. Numerical study on mixed convection of non-Newtonian nanofluid with porous media in a two lid-driven square cavity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08841-1.

  17. 17.

    Yousif MA, Ismael HF, Abaas T, Ellahi R. Numerical study of momentum and heat transfer of MHD carreau nanofluid over exponentially stretched plate with internal heat source/sink and radiation. J Heat Transf Res. 2019;50:649–58. https://doi.org/10.1615/HeatTransRes.2018025568.

  18. 18.

    Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala Leskelä M. Thermal study on electorospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimizing the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105:73–81. https://doi.org/10.1007/s10973-011-1631-5.

  19. 19.

    Asadollahi A, Esfahani JA, Ellahi R. Evacuating liquid coatings from a diffusive oblique fin micro-/mini-channels: an application of condensation cooling process. J Therm Anal Calrim. 2019;138:255–63. https://doi.org/10.1007/s10973-019-08243-3.

  20. 20.

    Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristic of iron oxide nano-suspension under constant magnetic field. Int J Ther Sci. 2019. https://doi.org/10.1016/j.ijthermalsci.2019.106131.

  21. 21.

    Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83. https://doi.org/10.1016/S1359-4311(02)00192-8.

  22. 22.

    Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;14:615–28. https://doi.org/10.1016/j.rser.2009.10.015.

  23. 23.

    Regin AF, Solanki S, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev. 2008;12:2438–58. https://doi.org/10.1016/j.rser.2007.06.009.

  24. 24.

    Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal storage: a review. Renew Sustain Energy Rev. 2011;15:24–46. https://doi.org/10.1016/j.rser.2010.08.007.

  25. 25.

    Sharma A, Tayagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change material and applications. Renew Sustain Energy Rev. 2009;13:318–45. https://doi.org/10.1016/j.rser.2007.10.005.

  26. 26.

    Verma P, Varun SK, Singal SK. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew Sustain Energy Rev. 2008;12:999–1031. https://doi.org/10.1016/j.rser.2006.11.002.

  27. 27.

    Khodadadi JM, Zhang Y. Effects of buoyancy-driven convection on melting within spherical containers. Int J Heat Mass Transf. 2001;44:1605–18. https://doi.org/10.1016/S0017-9310(00)00192-7.

  28. 28.

    Duan Q, Leong FL. A numerical study of solidification of n-hexadecane based on the enthalpy formulation. J Mater Process Technol. 2002;120:249–58. https://doi.org/10.1016/s0924-0136(01)01188-8.

  29. 29.

    Khillarkar DB, Gong ZX, Mujumdar AS. Melting of a phase change material in concentric horizontal annuli of arbitrary cross-section. Appl Therm Engineering. 2000;20:893–912. https://doi.org/10.1016/S1359-4311(99)00058-7.

  30. 30.

    Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50:790–1804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007.

  31. 31.

    Assis E, Ziskind G, Letan R. Numerical and experimental study of solidification in a spherical shell. J Heat Transf. 2009;31:24502–7. https://doi.org/10.1115/1.2993543.

  32. 32.

    Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52:3464–72. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043.

  33. 33.

    Medrano M, Yilmaz MO, Nogués M, Martorell I, Roca J, Cabeza LF. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy. 2009;86:2047–55. https://doi.org/10.1016/j.apenergy.2009.01.014.

  34. 34.

    Seeniraj RV, Velraj R, Narasimhan NL. Thermal analysis of a finned-tube LHTS module for a solar dynamic power system. Heat Mass Transf. 2002;38:409–17. https://doi.org/10.1007/s002310100268.

  35. 35.

    Castell A, Sole C, Medrano M, Roca J, Cabeza LF, Garcia D. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins. Appl Therm Eng. 2008;28:1676–86. https://doi.org/10.1016/j.applthermaleng.2007.11.004.

  36. 36.

    Sari A, Kaygusuz K. Thermal and heat transfer characteristics in a latent heat storage system using lauric acid. Energy Convers Manag. 2002;43:2493–507. https://doi.org/10.1016/S0196-8904(01)00187-X.

  37. 37.

    Pandiyarajan V, Pandian MC, Malan E, Velraj R, Seenira RV. Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl Energy. 2011;88:77–87. https://doi.org/10.1016/j.apenergy.2010.07.023.

  38. 38.

    Liu Z, Sun X, Ma C. Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement. Energy Convers Manag. 2005;46:971–84. https://doi.org/10.1016/j.enconman.2004.05.011.

  39. 39.

    Ettouney HM, Alatiqi I, Al-Sahali M, Al-Ali SA. Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems. Renew Energy. 2004;29:841–60. https://doi.org/10.1016/j.renene.2003.11.003.

  40. 40.

    Akgün M, Aydın O, Kaygusuz K. Experimental study on melting/solidification characteristics of paraffin as PCM. Energy Convers Manag. 2007;48:669–78. https://doi.org/10.1016/j.enconman.2006.05.014.

  41. 41.

    Vyshak NR, Jilani G. Numerical analysis of latent heat thermal energy storage system. Energy Convers Manag. 2007;48:2161–8. https://doi.org/10.1016/j.enconman.2006.12.013.

  42. 42.

    Adine HA, Qarnia HE. Numerical analysis of the thermal behavior of a shell and tube heat storage unit using phase change materials. Appl Math Model. 2009;33:2132–44. https://doi.org/10.1016/j.apm.2008.05.016.

  43. 43.

    Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17. https://doi.org/10.1016/0894-1777(88)90043-X.

  44. 44.

    Voller V, Prakash C. A fixed grid numerical modeling methodology for convection–diffusion mushy region phase-change problems. Int J Heat Mass Transf. 1987;30:9–19. https://doi.org/10.1016/0017-9310(87)90152-9.

  45. 45.

    Brent AD, Voller VR, Reid KJ. Enthalpy-porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal. Numer Heat Transf Part B. 1988;13:297–318. https://doi.org/10.1080/10407788808913615.

  46. 46.

    Patankar SV. Numerical heat transfer and fluid flow, hemisphere, Washington. DC, USA, 1980. https://doi.org/10.1201/9781482234213.

  47. 47.

    Ferziger JH, Peric M. Computational methods for fluid dynamics. Berlin: Springer; 2002. https://doi.org/10.1007/978-3-642-56026-2.

Download references

Author information

Correspondence to Mohammad B. Ayani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Juaifer, H.J.A., Ayani, M.B. & Poursadegh, M. Melting process of paraffin wax inside plate heat exchanger: experimental and numerical study. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09275-w

Download citation

Keywords

  • Melting process
  • Natural convection
  • Paraffin wax
  • Numerical simulation
  • Experimental study
  • Energy storage