Long-term hydration behavior and pore structure development of cement–limestone binary system

  • Jian Ma
  • Zhuqing YuEmail author
  • Hu Shi
  • Yu Zhang
  • Xiaodong Shen


This study concerns the long-term hydration behavior and pore structure of cement paste incorporated with limestone powder. The cement paste specimens are investigated by isothermal calorimetry, X-ray diffraction, thermogravimetric analysis and mercury intrusion porosimetry. The dosages of limestone powder are 5, 15 and 25%, respectively. The experimental results are collected within 180 days. From the obtained results, 25% limestone powder accelerates the transformation of hemicarboaluminate to monocarboaluminate. The ettringite stably exists in cement paste incorporated with limestone powder at all curing ages. The presence of limestone powder does not significantly influence the value of the critical pore width (Dcr) of cement pastes at later curing ages.


Portland cement Limestone powder Thermal analysis Hydration Pore structures 



The authors would like to acknowledge the financial supports provided by the National Key Research and Development Program of China (2017YFB0309902), the National Natural Science Foundation of China (51708290), the Natural Science Foundation of Jiangsu Province, China (BK20161001), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Changjiang Scholars and Innovative Research Team in University (No. IRT_15R35).


  1. 1.
    Ali Akbar R. Cement replacement materials: properties, durability, sustainability. New York: Springer; 2014. ISBN 978-3-642-36720-5.Google Scholar
  2. 2.
    Popescu CD, Muntean M, Sharp JH. Industrial trial production of low energy belite cement. Cem Concr Compos. 2003;25(7):689–93.CrossRefGoogle Scholar
  3. 3.
    Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34:1489–98.CrossRefGoogle Scholar
  4. 4.
    Deja J, Uliasz-Bochenczyk A, Mokrzycki E. CO2 emissions from Polish cement industry. Int J Greenh Gas Control. 2010;4(4):583–8.CrossRefGoogle Scholar
  5. 5.
    Han F, Zhang Z, Liu J, Yan P. Effect of water-to-binder ratio on the hydration kinetics of composite binder containing slag or fly ash. J Therm Anal Calorim. 2017;128:855–65.CrossRefGoogle Scholar
  6. 6.
    Sun J, Shen X, Tan G, Tanner J. Compressive strength and hydration characteristics of high-volume fly ash concrete prepared from fly ash. J Therm Anal Calorim. 2019;136:565–80.CrossRefGoogle Scholar
  7. 7.
    Mazloom M, Ramezanianpour AA, Brooks JJ. Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. 2004;26(4):347–57.CrossRefGoogle Scholar
  8. 8.
    Shuhua L, Faguang L, Lihua L. Supplementary cementing materials used in concrete. China: Architecture & Building Press; 2010. ISBN 978-7-80227-7-687.Google Scholar
  9. 9.
    Xu Z, Zhou Z, Du P, Cheng X. Effects of nano-limestone on hydration properties of tricalcium silicate. J Therm Anal Calorim. 2017;129:75–83.CrossRefGoogle Scholar
  10. 10.
    Hooton D, Nokken M, Thomas MDA. Portland-limestone cement: state-of-the-art report and gap analysis for CSA A 3000; 2007.Google Scholar
  11. 11.
    Lollini F, Redaelli E, Bertolini L. Effects of portland cement replacement with limestone on the properties of hardened concrete. Cem Concr Compos. 2014;46:32–40.CrossRefGoogle Scholar
  12. 12.
    Douglas Hooton R. Current developments and future needs in standards for cementitious materials. Cem Concr Res. 2015;78:165–77.CrossRefGoogle Scholar
  13. 13.
    Tennis PD, Thomas MDA, Weiss WJ. State-of-the-art report on use of limestone in cements at levels of up to 15%; 2011.Google Scholar
  14. 14.
    GB 175-2007 Common Portland cement. China building materials industry association, Beijing, China; 2007.Google Scholar
  15. 15.
    CSA A3000-13 Cementitious materials compendium, Canadian Standards Association, Toronto, Ontario, Canada; 2013.Google Scholar
  16. 16.
    European standards EN 197-1 Cement Composition; 2000.Google Scholar
  17. 17.
    Bonavetti VL, Rahhal VF, Irassar EF. Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res. 2001;31(6):853–9.CrossRefGoogle Scholar
  18. 18.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cem Concr Res. 2008;38(6):848–60.CrossRefGoogle Scholar
  19. 19.
    Taylor HF. Cement chemistry. London: Thomas Telford; 1997. ISBN 0-7277-2592-0.CrossRefGoogle Scholar
  20. 20.
    Matschei T, Lothenbach B, Glasser FP. The role of calcium carbonate in cement hydration. Cem Concr Res. 2007;37(4):551–8.CrossRefGoogle Scholar
  21. 21.
    Soroka I, Stern N. Calcareous fillers and the compressive strength of portland cement. Cem Concr Res. 1976;6(3):367–76.CrossRefGoogle Scholar
  22. 22.
    Detwiler R, Tennis PD. The use of limestone in portland cement: a state-of-the-art review. Skokie: Portland Cement Association; 1996.Google Scholar
  23. 23.
    Vance K, Aguayo M, Oey T, Sant G, Neithalath N. Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cem Concr Compos. 2013;39:93–103.CrossRefGoogle Scholar
  24. 24.
    Berodier E, Scrivener K, Scherer G. Understanding the filler effect on the nucleation and growth of C-S-H. J Am Ceram Soc. 2014;97(12):3764–73.CrossRefGoogle Scholar
  25. 25.
    Berodier E, Scrivener K. Evolution of pore structure in blended systems. Cem Concr Res. 2015;73:25–35.CrossRefGoogle Scholar
  26. 26.
    Chindaprasirt P, Jaturapitakkul C, Sinsiri T. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem Concr Compos. 2005;27(4):425–8.CrossRefGoogle Scholar
  27. 27.
    Senhadji Y, Escadeillas G, Mouli M, Khelafi H. Benosman, Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. J Powder Technol. 2014;254:314–23.CrossRefGoogle Scholar
  28. 28.
    Tsivilis S, Tsantilas J, Kakali G, Chaniotakis E, Sakellariou A. The permeability of Portland limestone cement concrete. Cem Concr Res. 2003;33(9):1465–71.CrossRefGoogle Scholar
  29. 29.
    Ye G, Liu X, Schutter GD, Poppe AM, Taerwe L. Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cem Concr Compos. 2007;29(2):94–102.CrossRefGoogle Scholar
  30. 30.
    Liu S, Yan P. Effect of limestone powder on microstructure of concrete. J Wuhan Univ Technol Mater Sci Ed. 2010;25(2):328–31.CrossRefGoogle Scholar
  31. 31.
    Moon GD, Oh S, Sang HJ, Choi YC. Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Constr Build Mater. 2017;135:129–36.CrossRefGoogle Scholar
  32. 32.
    Pipilikaki P, Beazi-Katsioti M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Constr Build Mater. 2009;23(5):1966–70.CrossRefGoogle Scholar
  33. 33.
    Li C, Jiang L, Xu N, Jiang S. Pore structure and permeability of concrete with high volume of limestone powder addition. J Powder Technol. 2018;338:416–24.CrossRefGoogle Scholar
  34. 34.
    Das S, Aguayo M, Dey V, Kachala R, Mobasher B, Sant G, Neithalath N. The fracture response of blended formulations containing limestone powder: evaluations using two-parameter fracture model and digital image correlation. Cem Concr Compos. 2014;53(10):316–26.CrossRefGoogle Scholar
  35. 35.
    Melchers RE, Pape TM. The durability of reinforced concrete structures in marine environments. In: Australasian structural engineering conference (ASEC2012). 2012: engineers Australia.Google Scholar
  36. 36.
    Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ. Mechanisms of cement hydration. Cem Concr Res. 2011;41(12):1208–23.CrossRefGoogle Scholar
  37. 37.
    Sato T, Diallo F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transp Res Rec. 2010;2141:61–7.CrossRefGoogle Scholar
  38. 38.
    Thongsanitgarn P, Wongkeo W, Chaipanich A, Poon CS. Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: effect of limestone particle size. Constr Build Mater. 2014;66:410–7.CrossRefGoogle Scholar
  39. 39.
    Zajac M, Rossberg A, Le Saout G, Lothenbach B. Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos. 2014;46:99–108.CrossRefGoogle Scholar
  40. 40.
    De Weerdt K, Haha MB, Le Saout G, Kjellsen KO, Justnes H, Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res. 2011;41(3):279–91.CrossRefGoogle Scholar
  41. 41.
    Celik K, Hay R, Hargis CW, Moon J. Effect of volcanic ash pozzolan or limestone replacement on hydration of Portland cement. Constr Build Mater. 2019;197:803–12.CrossRefGoogle Scholar
  42. 42.
    Wang D, Shi C, Farzadnia N, Shi Z, Jia H. A review on effects of limestone powder on the properties of concrete. Constr Build Mater. 2018;192:153–66.CrossRefGoogle Scholar
  43. 43.
    Monteiro P, Mehta P. Concrete: microstructure, properties and materials. 3rd ed. New York: McGraw-Hill; 2006. ISBN 0071797874.Google Scholar
  44. 44.
    De Weerdt K, Kjellsen KO, Sellevold E, Justnes H. Synergy between fly ash and limestone powder in ternary cements. Cem Concr Compos. 2011;33(1):30–8.CrossRefGoogle Scholar
  45. 45.
    Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42:1579–89.CrossRefGoogle Scholar
  46. 46.
    Marsh BK, Day RL. Pozzolanic and cementitious reactions of fly ash in blended cement pastes. Cem Concr Res. 1988;18(2):301–10.CrossRefGoogle Scholar
  47. 47.
    Yu Z. Microstructure development and transport properties of portland cement-fly ash binary systems. Ph.D. thesis, Technische Universiteit Delft; 2015.Google Scholar
  48. 48.
    Wang D, Shi C, Farzadnia N, Shi Z, Jia H, Ou Z. A review on use of limestone powder in cement-based materials: mechanism, hydration and microstructures. Constr Build Mater. 2018;181:659–72.CrossRefGoogle Scholar
  49. 49.
    Scrivener K, Snellings R, Lothenbach L. A practical guide to microstructural analysis of cementitious materials. Boca Raton: CRC Press; 2016. ISBN 978-1-4987-3867-5.Google Scholar
  50. 50.
    Aligizaki KK. Pore structure of cement-based materials: testing: interpretation and requirements. Boca Raton: CRC Press; 2006. ISBN 0-419-22800-4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.The Synergetic Innovation Center for Advanced MaterialsNanjingPeople’s Republic of China

Personalised recommendations