Advertisement

Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis

Abstract

The aim of the article was to examine the thermal degradation, thermal decomposition kinetics and dielectric behavior of novel poly(APHP-Am–Ac). For this purpose, the novel monomer, 4-(3-(4-acetamidophenyl)-3-oxoprop-1-en-1-yl)phenyl acrylate (APHP-Am–Ac), was synthesized from 1-(4-aminophenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (APHP) and acetic anhydride reaction. The homopolymer P(APHP-Am–Ac) was prepared by free radical polymerization within dimethylformamide at 80 °C. The presence of rigid and bulky chalcone units in polymer side chains significantly improved the solubility of polyamides, giving them an amorphous nature and good thermal stability. The structural characterization of homopolymer was accomplished using FT-IR and NMR techniques. The thermal stability and degradation features of homopolymer have been performed by using TG analysis and FT-IR during partial degradation at different temperatures. The glass transition temperature of homopolymer was determined by DSC analysis. For thermal decomposition kinetics of poly(APHP-Am–Ac), Flynn–Wall–Ozawa and Kissinger methods were applied to thermogravimetric curves and apparent activation energies (Ea) calculated from these two methods. According to FWO, the activation energy (Ea) of the first step and the second step was found as: 157.78 kJ mol−1 and 151.81 kJ mol−1, respectively. For Kissinger’s model, Ea was calculated as 154.3 kJ mol−1 and 142.83 kJ mol−1, respectively. The dielectric and conductivity measurements of homopolymer were investigated by impedance analyzer technique in a range of 10 Hz–20 kHz frequency at different temperatures (from 25 to 120 °C). The results have been plotted as a function of frequency and temperatures. The values increased significantly with temperature.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Faghihi K, Moghanian H. Synthesis and characterization of optically active poly(amide-imid)s containing photosensitive chalcone units in the main chain. Chin J Polym Sci. 2010;28:695–704.

  2. 2.

    Marioara N. Novel chalcone-based aromatic polyamides: synthesis, characterization, and properties. Des Monomers Polym. 2016;19(2):1–11.

  3. 3.

    Rami Reddy AV, Sreenivasulu Reddy P, Anand PS. Synthesis and characterization of novel aromatic poly(amide–imide)s with alternate (amide–amide) and (imide–imide) sequences. Eur Polym J. 1998;34:1441–6.

  4. 4.

    Aygün EN, Coşkun M. Poly[4-pyridinyl-4′-(2-methacryloyloxyethoxy)styryl ketone-co-2-hydroxypropyl methacrylate]: synthesis, characterization, thermal and electrical properties, and photocrosslinking behavior. El-Cezerî J Sci Eng. 2018;5:24–34.

  5. 5.

    Yerragunta V, Kumaraswamy T, Suman D, Anusha V, Patil P, Samhitha T. A review on Chalcones and its importance. PharmaTutor. 2013;1(2):54–9.

  6. 6.

    Vitorovic-Todorovic MD, Eric-Nikolic A, Kolundzija B, Hamel E, Ristic S, Juranic IO, Drakulic BJ. (E)-4-Aryl-4-oxo-2-butenoic acid amides, chalconeearoylacrylic acidchimeras: design, antiproliferative activity and inhibition of tubulin polymerization. Eur J Med Chem. 2013;62:40–50.

  7. 7.

    Yalçınkaya Z. Thermal decomposition kinetics of some transition metals complexes. Turk J Appl Sci Technol. 2017;1(1):31–8.

  8. 8.

    Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand A Phys Chem. 1966;70A(6):487–523.

  9. 9.

    Wendlandt WW. Thermal analysis. 3rd ed. London: Wiley; 1986.

  10. 10.

    Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

  11. 11.

    Coats AW, Redfen JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

  12. 12.

    Gupta GK, Mondal MK. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. J Therm Anal Cal. 2019;137:1431–41.

  13. 13.

    Orsolya K, Bardos P, Boyadjiev S, Igricz T, Kristof Z, Imre N, Szilagyi M. Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers. J Therm Anal Cal. 2019;137:1249–54.

  14. 14.

    Biryan F, Demirelli K. Characterization, thermal behavior, and electrical measurements of poly[4-(2-bromoisobutyroyl methyl)styrene]. Adv Polym Teghnol. 2017;37:1994–2012.

  15. 15.

    Vyazovkin S, Burnham AK, Criado JM, Pe′rez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Act. 2011;520:1–19.

  16. 16.

    Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

  17. 17.

    Cao CR, Shu CM. Kinetic modeling for thermal hazard of 2,20-azobis(2-methylpropionamide) dihydrochloride using calorimetric approach and simulation. J Therm Anal Cal. 2019;137:1021–30.

  18. 18.

    Acquah C, Danquah MK, Moy CKS, Anwar M, Ongkudon CM. Thermogravimetric characterization of ex situ polymethacrylate (EDMA-co-GMA) monoliths. Can J Chem Eng. 2017;95:1345–51.

  19. 19.

    Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

  20. 20.

    Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem. 2006;14:3491–5.

  21. 21.

    Mao Z, Zhang J, Toughening J. Effect of CPE on ASA/SAN binary blends at different temperatures. Appl Polym Sci. 2016;133:43353–60.

  22. 22.

    Jeske H, Schirp A, Cornelius F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochim Act. 2012;543:165–71.

  23. 23.

    Sedaghat E, Rostami AA, Ghaemy M, Rostami A. Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly(vinyl alcohol)/starch nanocomposite. J Therm Anal Cal. 2019;136:759–69.

  24. 24.

    Meng XL, Huang YD, Yu H, Lv ZS. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym Degrad Stab. 2007;92:962–7.

  25. 25.

    Kurt A, Koca M. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-ylmethacrylate) and its organoclay nanocomposites. J Eng Res. 2016;4:46–65.

  26. 26.

    Biryan F, Demirelli K. A methacrylate monomer bearing nitro, aryl, and hydroxyl side groups: homopolymerization, characterization, dielectric, and thermal degradation behaviors. J Appl Polym Sci. 2016;133:1–14.

  27. 27.

    Aboulkas A, El Harfi K. Study of the kinetics and mechanisms of thermal decomposition of moroccan tarfaya oil shale and its kerogen. Oil Shale. 2008;25:426–43.

  28. 28.

    Venkatesh M, Ravi P, Surya P. Tewari isoconversional kinetic analysis of decomposition of nitroimidazoles: friedman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117:10162–9.

  29. 29.

    Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

  30. 30.

    Biryan F, Demirelli K. Thermal degradation kinetic, electrical and dielectric behavior of brush copolymer with a polystyrene backbone and polyacrylate-amide side chains/nanographene-filled composites. J Mol Struct. 2019;1186:187–203.

  31. 31.

    Liu P, Zhen W. Structure-property relationship, rheological behavior, and thermal degradability of poly(lactic acid)/fulvic acid amide composites. Polym Adv Technol. 2018;29:2192–203.

  32. 32.

    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

  33. 33.

    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Cal. 1970;2:301–24.

  34. 34.

    Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

  35. 35.

    Kurt A. Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. J Appl Polym Sci. 2009;114:624–9.

  36. 36.

    Gasparovie L, Labovsky J, Markos J, Jelemensky L. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q. 2012;26:45–53.

  37. 37.

    Zhang C, Guo X, Ma S, Zheng Y, Xu J, Ma H. Synthesis of a novel branched cyclophosphaene-PEPA flame retardant and its application on polypropylene. J Therm Anal Cal. 2019;137:33–42.

  38. 38.

    Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol. 2003;63:225–35.

  39. 39.

    Bal K, Kothari VK. Measuremet of dielectric properties of textile materials and their applications. Ind J Fıbre Tex Res. 2009;34:191–9.

  40. 40.

    Patel PK, Rani J, Adhlakha N, Singh H, Yadav KL. Enhanced dielectric properties of doped barium titanate ceramics. J Phys Chem Solids. 2013;74:545–9.

  41. 41.

    Belakere NN, Misra SCK, Ram MK, Rout DK, Gupta R, Malhotra BD, Chandra S. Interfacial polarization in semiconducting polypyrrole thin films. J Phys Conden Matter. 1992;4:5747–56.

  42. 42.

    Biryan F, Demirelli K. Temperature-frequency dependence on electrical properties of EuCI3 based composites, thermal behaviors and preparation of poly(3-acetamidopropyl acrylate). Ferroelectrics. 2018;526:76–94.

  43. 43.

    Ku CC, Liepins R. Electrical properties of polymers: chemical principles. Munich: Hanser; 1987. p. 11.

  44. 44.

    Abd El-kader FH, Osman WH, Mahmoud KH, Basha MAF. Dielectric investigations and ac conductivity of polyvinyl alcohol films doped with europium and terbium chloride. Phys B Conden Matter. 2008;403:3473–84.

  45. 45.

    Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mat Dev. 2018;3:1–17.

Download references

Author information

Correspondence to Fatih Biryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biryan, F., Pihtili, G. Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. J Therm Anal Calorim (2020) doi:10.1007/s10973-019-09243-z

Download citation

Keywords

  • Chalcone
  • Thermal study
  • Non-isothermal thermogravimetric analysis
  • Activation energy