Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Exploration of the thermal decomposition of zinc oxalate by experimental and computational methods

Abstract

Zinc oxalate dihydrate has been synthesized by precipitation method and characterized by FT-IR, XRD and SEM-EDAX. The kinetics of dehydration and decomposition were studied by non-isothermal DSC technique in the N2 atmosphere at different heating rates: 4, 6, 8 and 10 K min−1. The product of thermal decomposition, ZnO has been characterized by UV, TEM, SEM-EDAX and XRD and found that the particles are in nanometer range. The activation energy for thermal dehydration and decomposition was calculated by various isoconversional methods. Furthermore, structure and reactivity of zinc oxalate have also been investigated using B3LYP/631+g (d, p) level of theory with the help of Gaussian 09W software. The theoretical investigation indicates that most probably the compound decomposes to ZnO along with the evolution of CO2 and CO.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Brown ME, Galwey AK. Thermal decomposition of ionic solids. New York: Elsevier Science; 1999.

  2. 2.

    Mohamed MA, Halawy SA, Salem MA. Non-isothermal decomposition of potassium ferrioxalate trihydrate. J Anal Appl Pyrolysis. 2000;55:55–67.

  3. 3.

    Deb N. An investigation on the solid-state thermal decomposition of bimetallic oxalate and tartrate coordination precursors of lanthanum(III) and palladium(II) ions. J Anal Appl Pyrolysis. 2008;82:223–8.

  4. 4.

    Lvov BV, Boris VL. The physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim Acta. 2001;373:97–124.

  5. 5.

    Boldyrev VV. Thermal decomposition of silver oxalate. Thermochim Acta. 2002;388:63–90.

  6. 6.

    Muraleedharan K, Kripa S. DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim. 2014;115:1969–78.

  7. 7.

    Donia AM. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3013–31.

  8. 8.

    Limin G, Hiroyuki A, Norio T. Synthesis of mesoporous metal oxide by the thermal decomposition of oxalate precursor. Langmuir. 2013;29:4404–12.

  9. 9.

    Charu A, Aditi S, Sanju S, Yeshwant N, Gollamudi R. Solid-state reaction of strontium oxalate with uranium oxalate application of TG. J Therm Anal Calorim. 2016;124:43–9.

  10. 10.

    Charu A, Shalu C, Gollamudi R, Yeshwant PN. Application of thermogravimetric analysis in study of solid-state reaction between barium oxalate and uranyl oxalate. J Therm Anal Calorim. 2016;124:51–6.

  11. 11.

    Fatemi NS, Dollimore D, Heal GR. Thermal decomposition of oxalates. Part 16. Thermal decomposition studies on cadmium oxalate. Thermochim Acta. 1982;54:167–80.

  12. 12.

    Gülbanu KC, Halil C, Ramazan D. Thermal and kinetic analysis of uranium salts. Part III. Uranium(IV) oxalate hydrates. J Therm Anal Calorim. 2014;115:2007–20.

  13. 13.

    Ahmad T, Ganguli AK, Ganguly A, Ahmed J, Wani IA, Khatoon S. Chemistry of reverse micelles: a versatile route to the synthesis of nanorods and nanoparticles. Mater Res Soc Symp Proc. 2009;1142:75–88.

  14. 14.

    Kansal SK, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater. 2007;141:581–90.

  15. 15.

    Zamora PP, Gouvêa CAK, Wypych F, Moraes SG, Durán N, Nagata N. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere. 2000;40:433–40.

  16. 16.

    Muruganandham M, Chen IS, Wu JJ. Effect of temperature on the formation of macroporous ZnO bundles and its application in photocatalysis. J Hazard Mater. 2009;172:700–6.

  17. 17.

    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells. 2003;77:65–82.

  18. 18.

    Fujita J, Nakamoto K, Kobayashi M. Infrared spectra of metallic complexes. III. The infrared spectra of metallic oxalates. J Phys Chem. 1957;61:1014–5.

  19. 19.

    Jacob MU, Rerlmutter DD. Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formates, and hydroxides. Thermochim Acta. 1981;49:207–18.

  20. 20.

    Dollimore D. The influence of the environment on the thermal decomposition of oxysalts. J Therm Anal. 1977;11:185–200.

  21. 21.

    Nikumbh AK, Athare AE, Pardeshi SK. Thermal and electrical properties of manganese (II) oxalate dihydrate and cadmium (II) oxalate monohydrate. Thermochim Acta. 1999;326:187–92.

  22. 22.

    Majumdar R, Sarkar P, Ray U, Roy MM. Secondary catalytic reactions during thermal decomposition of oxalates of zinc, nickel and iron(II). Thermochim Acta. 1999;335:43–53.

  23. 23.

    Małecka B, Drozdz-Cieśla E, Małecki A. Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim Acta. 2004;423:13–8.

  24. 24.

    Hu C, Mi J, Shang S, Shangguan J. The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dihydrate. J Therm Anal Calorim. 2014;115:1119–25.

  25. 25.

    Reshmi S, Vijayalakshmi KP, Thomas D, George BK, Nair CPR. Thermal decomposition of a diazido ester: pyrolysis GC-MS and DFT study. J Anal Appl Pyrolysis. 2013;104:603–8.

  26. 26.

    Sarada K, Vijisha KR, Muraleedharan K. Exploration of the thermal decomposition of oxalates of copper and silver by experimental and computational methods. J Anal Appl Pyrolysis. 2016;120:207–14.

  27. 27.

    Kolezyński A, Małecki A. Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates: part II. Correlations between the electronic structure and the ways of thermal decomposition. J Therm Anal Calorim. 2009;96:167–73.

  28. 28.

    Kolezyński A, Małecki A. First principles studies of thermal decomposition of anhydrous zinc oxalate. J Therm Anal Calorim. 2009;96:645–51.

  29. 29.

    Koleżyński A, Małecki A. Theoretical approach to thermal decomposition process of chosen anhydrous oxalates. J Therm Anal Calorim. 2009;97:77–83.

  30. 30.

    Kolezyński A, Małecki A. Theoretical analysis of electronic and structural properties of anhydrous calcium oxalate. J Therm Anal Calorim. 2010;99:947–55.

  31. 31.

    Kolezyński A, Małecki A. Theoretical studies of electronic and crystal structure properties of anhydrous mercury oxalate. J Therm Anal Calorim. 2010;101:499–504.

  32. 32.

    Koleżyński A, Handke B, Drożdż-Cieśla E. Crystal structure, electronic structure, and bonding properties of anhydrous nickel oxalate. J Therm Anal Calorim. 2013;113:319–28.

  33. 33.

    Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

  34. 34.

    Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

  35. 35.

    Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978.

  36. 36.

    Zhigang J, Daping R, Lixin X, Rongsun Z. Preparation, characterization and photocatalytic activity of porous zinc oxide superstructure. Mater Sci Semicond Process. 2012;15:270–6.

  37. 37.

    Velmurugan R, Swaminathan M. An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light. Sol Energy Mater Sol Cells. 2011;95:942–50.

  38. 38.

    Nelsa A, Alex R, Unni C, Daizy P. Nanostructured ZnO with bio-capping for nanofluid and natural dye based solar cell applications. J Mater Sci Mater Electron. 2017;28:16527–39.

  39. 39.

    Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12.

  40. 40.

    Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics projects-data, methods and results. Thermochim Acta. 2000;355:155–63.

  41. 41.

    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

  42. 42.

    Sarada K, Muraleedharan K. Effect of addition of silver on the thermal decomposition kinetics of copper oxalate. J Therm Anal Calorim. 2016;123:643–51.

  43. 43.

    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermo gravi-metric data. Polym Lett. 1966;4:323–8.

  44. 44.

    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

  45. 45.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

  46. 46.

    Wanjun T, Donghua C. New approximate formula for the generalized temperature integral. J Therm Anal Calorim. 2009;98:437–40.

  47. 47.

    Jose John M, Muraleedharan K, Kannan MP, Ganga Devi T. Kinetic studies on the thermal decomposition of phosphate-doped sodium oxalate. J Therm Anal Calorim. 2013;111:137–44.

Download references

Acknowledgements

The author K. Sabira expresses her sincere gratitude to Human Resource Development Group, Council of Scientific & Industrial Research (CSIR), India, for granting Research Fellowship in the form of CSIR-JRF. The author also acknowledges STIC, CUSAT for TEM analysis and CSIF, University of Calicut, for SEM-EDAX analysis.

Author information

Correspondence to K. Muraleedharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 828 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabira, K., Muraleedharan, K. Exploration of the thermal decomposition of zinc oxalate by experimental and computational methods. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-019-09169-6

Download citation

Keywords

  • Zinc oxalate dihydrate
  • Thermal decomposition
  • Dehydration
  • Isoconversional methods