Thermal analysis of cesium hafnium chloride using DSC–TG under vacuum, nitrogen atmosphere, and in enclosed system

  • R. KrálEmail author
  • P. Zemenová
  • V. Vaněček
  • A. Bystřický
  • M. Kohoutková
  • V. Jarý
  • S. Kodama
  • S. Kurosawa
  • Y. Yokota
  • A. Yoshikawa
  • M. Nikl


This paper reports on the preparation of undoped cesium hafnium chloride (Cs2HfCl6) and study of its thermal properties. The Cs2HfCl6 is considered, due to its excellent scintillation properties, as a promising candidate for cost-effective radiation detectors with potential to replace traditional halide scintillators, e.g., NaI:Tl and CsI:Tl. The Cs2HfCl6 material was successfully synthesized from a cesium chloride and a hafnium chloride mixed together in stoichiometric ratio. The presence of only one crystalline phase of the Cs2HfCl6 in the material was confirmed by the X-ray diffraction analysis. The simultaneous non-isothermal differential scanning calorimetry and thermogravimetry (DSC–TG) of the synthesized material under nitrogen atmosphere, vacuum, and in enclosed system was performed. The Cs2HfCl6 decomposition and melting of CsCl–Cs2HfCl6 mixture under nitrogen and vacuum were observed. On the contrary, the DSC measurement of the cesium hafnium chloride in enclosed system showed only one endothermic peak related to the congruent melting point. Furthermore, the repeated DSC–TG measurements to investigate the materials’ stability in enclosed system were carried out as well.


Cesium hafnium chloride DSC–TG Thermal stability Scintillator 



This work was performed in the framework of the Czech Science Foundation Project No. 18-17555Y and partial support by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760). The authors would like to thank Mr. A. Cihlář for quartz ampule preparation.


  1. 1.
    Krämer KW, Dorenbos P, Güdel HU, van Eijk CWE. Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials. J Mater Chem. 2006;16:2773–80.CrossRefGoogle Scholar
  2. 2.
    Alekhin MS, de Haas JTM, Khodyuk IV, Krämer KW, Menge PR, Ouspenski V, et al. Improvement of γ-ray energy resolution of LaBr 3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping. Appl Phys Lett. 2013;102:161915.CrossRefGoogle Scholar
  3. 3.
    Bessiere A, Dorenbos P, van Eijk CWE, Kramer KW, Gudel HU. New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr 6:Ce3+. IEEE Trans Nucl Sci. 2004;51:2970–2.CrossRefGoogle Scholar
  4. 4.
    Wei H, Stand L, Zhuravleva M, Meng F, Martin V, Melcher CL. Two new cerium-doped mixed-anion elpasolite scintillators: Cs2NaYBr 3I3 and Cs2NaLaBr3I3. Opt Mater. 2014;38:154–60.CrossRefGoogle Scholar
  5. 5.
    Cherepy NJ, Hull G, Drobshoff AD, Payne SA, van Loef E, Wilson CM, et al. Strontium and barium iodide high light yield scintillators. Appl Phys Lett. 2008;92:083508.CrossRefGoogle Scholar
  6. 6.
    Wu Y, Li Q, Chakoumakos BC, Zhuravleva M, Lindsey AC, Johnson JA, et al. Quaternary iodide K(Ca, Sr)I3:Eu2+ single-crystal scintillators for radiation detection: crystal structure, electronic structure, and optical and scintillation properties. Adv Opt Mater. 2016;4:1518–32.CrossRefGoogle Scholar
  7. 7.
    Burger A, Rowe E, Groza M, Morales Figueroa K, Cherepy NJ, Beck PR, et al. Cesium hafnium chloride: a high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy. Appl Phys Lett. 2015;107:143505.CrossRefGoogle Scholar
  8. 8.
    Kang B, Biswas K. Carrier self-trapping and luminescence in intrinsically activated scintillator: cesium hafnium chloride (Cs2HfCl6). J Phys Chem C. 2016;120:12187–95.CrossRefGoogle Scholar
  9. 9.
    Král R, Babin V, Mihóková E, Buryi M, Laguta VV, Nitsch K, et al. Luminescence and charge trapping in Cs2HfCl6 single crystals: optical and magnetic resonance spectroscopy study. J Phys Chem C. 2017;121:12375–82.CrossRefGoogle Scholar
  10. 10.
    Cardenas C, Burger A, DiVacri ML, Goodwin B, Groza M, Laubenstein M, et al. Internal contamination of the Cs2HfCl6 crystal scintillator. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip. 2017;872:23–7.CrossRefGoogle Scholar
  11. 11.
    Cardenas C, Burger A, Goodwin B, Groza M, Laubenstein M, Nagorny S, et al. Pulse-shape discrimination with Cs2HfCl6 crystal scintillator. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip. 2017;869:63–7.CrossRefGoogle Scholar
  12. 12.
    Lam S, Guguschev C, Burger A, Hackett M, Motakef S. Crystal growth and scintillation performance of Cs2HfCl6 and Cs2HfCl4Br2. J Cryst Growth. 2018;483:121–4.CrossRefGoogle Scholar
  13. 13.
    Barraud E, Bégin-Colin S, Le Caër G, Villieras F, Barres O. Thermal decomposition of HfCl4 as a function of its hydration state. J Solid State Chem. 2006;179:1842–51.CrossRefGoogle Scholar
  14. 14.
    Asvestas DA, Pint P, Flengas SN. Some thermodynamic properties of the solutions of ZrCl4 and HfCl4 in CsCl melts. Can J Chem. 1977;55:1154–66.CrossRefGoogle Scholar
  15. 15.
    Maniv S. Crystal data for Cs2HfCl6. J Appl Crystallogr. 1976;9(3):245.CrossRefGoogle Scholar
  16. 16.
    Maniv S, Low W, Gabay A. EPR spectrum of W5+ in single crystals of Cs2ZrCl6 and Cs2HfCl6. J Phys Chem Solids. 1971;32:815–7.CrossRefGoogle Scholar
  17. 17.
    Kipouros GJ, Flengas SN. Equilibrium decomposition pressures of the compounds Cs2ZrCl6 and Cs2HfCl6 and X-ray identification of Na2HfCl6, K2HfCl6, and Cs2HfCl6. Can J Chem. 1983;61:2183–8.CrossRefGoogle Scholar
  18. 18.
    Drummen PJH, Donker H, Smit WMA, Blasse G. Jahn-Teller distortion in the excited state of tellurium(IV) in Cs2MCl6 (M = Zr, Sn). Chem Phys Lett. 1988;144:460–2.CrossRefGoogle Scholar
  19. 19.
    Ackerman JF. Preparation and luminescence of some [K2PtCl6] materials. Mater Res Bull. 1984;19:783–91.CrossRefGoogle Scholar
  20. 20.
    Morozov IS, Sun IC. Izucheniye diagramm sostoyaniya sistem ZrCl4-KCl, ZrCl4-CsCl, HfCl4-NaCl, HfCl4-KCl, HfCl4-CsCl. Zhur Neorg Khim. 1959;4:678–83.Google Scholar
  21. 21.
    Nitsch K, Cihlář A, Málková Z, Rodová M, Vaněček M. The purification and preparation of high-purity PbCl2 and ternary alkali lead chloride single crystals. J Cryst Growth. 1993;131:612–5.CrossRefGoogle Scholar
  22. 22.
    Král R, Nitsch K, Babin V, Šulc J, Jelínková H, Yokota Y, et al. Growth and optical properties of RE-doped ternary rubidium lead chloride single crystals. Opt Mater. 2013;36:214–20.CrossRefGoogle Scholar
  23. 23.
    Stand L, Zhuravleva M, Chakoumakos B, Wei H, Johnson J, Martin V, et al. Characterization of mixed halide scintillators: CsSrBrI2:Eu, CsCaBrI2:Eu and CsSrClBr2:Eu. J Lumin. 2019;207:70–7.CrossRefGoogle Scholar
  24. 24.
    Wei H, Zhuravleva M, Yang K, Blalock B, Melcher CL. Effect of Ba substitution in CsSrI3:Eu2+. J Cryst Growth. 2013;384:27–32.CrossRefGoogle Scholar
  25. 25.
    Nitsch K, Cihlář A, Dušek M, Hamplová V, Nikl M, Rodová M, et al. Growth and characterization of crystals of incongruently melting ternary alkali lead chlorides. Phys Status Solidi A. 1993;135:565–71.CrossRefGoogle Scholar
  26. 26.
    Loyd M, Lindsey A, Stand L, Zhuravleva M, Melcher CL, Koschan M. Tuning the structure of CsCaI3: Eu via substitution of bromine for iodine. Opt Mater. 2017;68:47–52.CrossRefGoogle Scholar
  27. 27.
    Gong P, Luo S, Huang Q, Yang Y, Jiang X, Liang F, et al. An alkaline tin(II) halide compound Na3Sn2F6Cl: synthesis, structure, and characterization. J Solid State Chem. 2017;248:104–8.CrossRefGoogle Scholar
  28. 28.
    Kipouros GJ, Flengas SN. Equilibrium decomposition pressures of the compounds K2ZrCl6 and K2HfCl6. Can J Chem. 1978;56:1549–54.CrossRefGoogle Scholar
  29. 29.
    Kipouros GJ, Flengas SN. Equilibrium decomposition pressures of the compounds Na2ZrCl6 and Na2HfCl6. Can J Chem. 1981;59:990–5.CrossRefGoogle Scholar
  30. 30.
    Lister RL, Flengas SN. On the relationship between equilibrium pressures and the phase diagram of a reactive system: the system: NaCl–Na2ZrCl6, KCl–K2ZrCl6, NaCl–KCl–ZrCl4. Can J Chem. 1965;43:2947–69.CrossRefGoogle Scholar
  31. 31.
    Galloni ΕΕ, Benyacar ΜRD, Abeledo ΜJD. Thermal behavior of potassium bromostannate. Z Für Krist Cryst Mater. 1962;117(8):470–2.Google Scholar
  32. 32.
    Lébl M, Trnka J. Entfernung von sauerstoffhaltigen Anionen aus Alkalihalogeniden. Z Für Phys. 1965;186:128–36.CrossRefGoogle Scholar
  33. 33.
    Nitsch K, Dušek M, Nikl M, Polák K, Rodová M. Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties. Prog Cryst Growth Charact Mater. 1995;30:1–22.CrossRefGoogle Scholar
  34. 34.
    Bloom H, Hastie JW. Transpiration vapor pressure measurements for the molten salt systems lead chloride + cesium chloride and cadmium chloride + cesium chloride. J Phys Chem. 1968;72:2361–5.CrossRefGoogle Scholar
  35. 35.
    Secco EA, Secco RA. Heats of solution/substitution of Tl+, Rb+, K+, Br, I in crystalline CsCl from heats of solid phase transition by differential scanning calorimetry. J Phys Chem Solids. 2002;63:1669–75.CrossRefGoogle Scholar
  36. 36.
    Natarajan M, Rao KJ, Rao CNR. Pm3m–Fm3m transformations of alkali halides Solid solutions of CsCl with KCl, CsBr, SrCl2. Trans Faraday Soc. 1970;66:2497.CrossRefGoogle Scholar
  37. 37.
    Barin I, Knacke O, Kubaschewski O. Thermochemical properties of inorganic substances. Berlin: Springer; 1977.CrossRefGoogle Scholar
  38. 38.
    Rossini FD, Wagman DD, Evans WH, Levine S, Jaffe I. Selected values of chemical thermodynamic properties. National Bureau of Standards circular, 500. Washington, D.C.: U.S. Govt. Print. Off.; 1952.Google Scholar
  39. 39.
    Buryi M, Král R, Babin V, Páterek J, Vaněček V, Veverka P, et al. Trapping and recombination centers in cesium hafnium chloride single crystals: EPR and TSL study. J Phys Chem C. 2019;123:19402–11.CrossRefGoogle Scholar
  40. 40.
    Rodová M, Cihlář A, Málková Z, Nitsch K. New differential thermal analysis study of lead halides. Chem Phys Lett. 1997;268:455–60.CrossRefGoogle Scholar
  41. 41.
    Nitsch K, Cihlář A, Rodová M. Molten state and supercooling of lead halides. J Cryst Growth. 2004;264:492–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Physics of the Czech Academy of SciencesPragueCzech Republic
  2. 2.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 1Czech Republic
  3. 3.University of Chemistry and Technology PraguePragueCzech Republic
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan
  5. 5.Faculty of ScienceYamagata UniversityYamagataJapan
  6. 6.New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
  7. 7.C&A CorporationSendaiJapan

Personalised recommendations