Advertisement

Microcalorimetric evaluation of the effects of three anthraquinone derivatives from Chinese Rhubarb and the synergistic effect of the mixture on Staphylococcus aureus

  • Xiangka Hu
  • Yue Ma
  • Zuodong Liu
  • Miaoxin Zhao
  • Sumin Dong
  • He Yang
  • Chunmei DaiEmail author
Article
  • 10 Downloads

Abstract

In this study, a noninvasive and nondestructive microcalorimetric method was used to investigate the antimicrobial activity of three anthraquinone derivatives (emodin, aloe-emodin and physcion) from Chinese Rhubarb. Additionally, we observed a synergistic antibacterial effect of a mixture (emodin + aloe-emodin) on Staphylococcus aureus. Antibacterial effects were further evaluated through principle component analysis and the half-inhibitory concentration (IC50) according to the influence of the anthraquinone derivatives on eight quantitative thermokinetic parameters, which were measured by isothermal microcalorimetry and obtained from metabolic power–time curves of Staphylococcus aureus growth at 37 °C. The inhibitory actions of the anthraquinone derivatives varied at different concentrations. The antibacterial effect of the derivatives on S. aureus was as follows: emodin + aloe-emodin (E + AE) > emodin (E) > aloe-emodin (AE) > physcion. Based on these results, the combined effect of emodin and aloe-emodin was stronger than that of each anthraquinone derivative alone. The combination of emodin and aloe-emodin is a promising antibacterial agent, providing a novel avenue for antibacterial materials.

Keywords

Emodin Aloe-emodin Physcion Antibacterial Synergistic S. aureus 

Notes

Acknowledgements

This study was supported by Research Project of Liaoning Provincial Department of Education (No. JYTFW201915). Xiangka Hu acknowledges their team for their help.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.CrossRefGoogle Scholar
  2. 2.
    Rd AF, Torres VJ. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev Mmbr. 2014;78:199–230.CrossRefGoogle Scholar
  3. 3.
    Kong C, Neoh HM, Nathan S. Targeting staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins. 2016.  https://doi.org/10.3390/toxins8030072.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kong WJ, Xing XY, Xiao XH, Zhao YL, Wei JH, Wang JB, et al. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol. 2012;96:503–10.CrossRefGoogle Scholar
  5. 5.
    Liu J, Wu F, Chen C. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorg Med Chem Lett. 2015;25:5142–6.CrossRefGoogle Scholar
  6. 6.
    Zhu T, Zhang W, Feng SJ, Yu HP. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway. Int Immunopharmacol. 2016;34:16–24.CrossRefGoogle Scholar
  7. 7.
    Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 2013;341:139–49.CrossRefGoogle Scholar
  8. 8.
    Xiong Y, Ren L, Wang Z, Hu Z, Zhou Y. Anti-proliferative effect of physcion on human gastric cell line via inducing ROS-dependent apoptosis. Cell Biochem Biophys. 2015.  https://doi.org/10.1007/s12013-015-0674-9.CrossRefPubMedGoogle Scholar
  9. 9.
    Acevedo-Duncan M, Russell C, Patel S, Patel R. Aloe–emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int Immunopharmacol. 2004;4:1775–84.CrossRefGoogle Scholar
  10. 10.
    Pang M, Yang Z, Zhang X, Liu Z, Fan J, Zhang H. Physcion, a naturally occurring anthraquinone derivative, induces apoptosis and autophagy in human nasopharyngeal carcinoma. Acta Pharmacol Sin. 2016;37:1623–40.CrossRefGoogle Scholar
  11. 11.
    Hu C, Dong T, Li R, Lu J, Wei X, Liu P. Emodin inhibits epithelial to mesenchymal transition in epithelial ovarian cancer cells by regulation of GSK-3β/β-catenin/ZEB1 signaling pathway. Oncol Rep. 2016;35:2027–34.CrossRefGoogle Scholar
  12. 12.
    Zi-Qing H, Huang HQ, Tan HM, Liu PQ, Zhao LZ, Chen SR, et al. Emodin inhibits dietary induced atherosclerosis by antioxidation and regulation of the sphingomyelin pathway in rabbits. Chin Med J. 2006;119(10):868–70.CrossRefGoogle Scholar
  13. 13.
    Li H, Wang X, Liu Y, Pan D, Wang Y, Yang N, et al. Hepatoprotection and hepatotoxicity of Heshouwu, a Chinese medicinal herb: context of the paradoxical effect. Food Chem Toxicol. 2016;108:407–18.CrossRefGoogle Scholar
  14. 14.
    Liu H, Gu L, Tu Y, Hu H, Huang Y, Sun W. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol Sin. 2016;37:235–45.CrossRefGoogle Scholar
  15. 15.
    Basu S, Ghosh A, Hazra B. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res. 2005;19:888–94.CrossRefGoogle Scholar
  16. 16.
    Siri M, Ruocco MJF, Achilli E, Pizzuto M, Delgado JF, Ruysschaert JM, et al. Effect of structure in ionised albumin based nanoparticle: characterisation, Emodin interaction, and in vitro cytotoxicity. Mater Sci Eng C Mater Biol Appl. 2019.  https://doi.org/10.1016/j.msec.2019.109813.CrossRefPubMedGoogle Scholar
  17. 17.
    Yu Y, Liu H, Yang D, He F, Yuan Y, Guo J, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression. Pharmacol Res. 2019.  https://doi.org/10.1016/j.phrs.2019.104315.CrossRefPubMedGoogle Scholar
  18. 18.
    Pan X, Wang C, Li Y, Zhu L, Zhang T. Protective autophagy induced by physcion suppresses hepatocellular carcinoma cell metastasis by inactivating the JAK2/STAT3 Axis. Life Sci. 2018;214:124–35.CrossRefGoogle Scholar
  19. 19.
    Meng X, Zhou X, Wang T, Li F, Li H, Li J, et al. Microcalorimetric study on the activation effects of Salviae miltiorrhizae combined with Radix puerariae on mice splenic lymphocytes. J Therm Anal Calorim. 2019;137:841–8.CrossRefGoogle Scholar
  20. 20.
    Wang T, Zhou X, Zou W, Zhang P, Wang J, Li H, et al. Synergistic effects of Ginseng C. A. Mey and Astragalus membranaceus (Fisch.) Bunge on activating mice splenic lymphocytes detected by microcalorimetry and the underlying mechanisms predicted by in silico network analysis. J Therm Anal Calorim. 2018;132:1933–42.CrossRefGoogle Scholar
  21. 21.
    Yan D, Li J, Xiong Y, Zhang C, Luo J, Han Y, Wang R, Jin C, Qian H, Li J, Qiu L, Peng C, Lin Y, Song X, Xiao X. Promotion of quality standard of herbal medicine by constituent removing and adding. Sci Rep. 2014.  https://doi.org/10.1038/srep03668.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tafin UF, Clauss M, Meis JF, Trampuz A, Hauser PM, Bille J. Isothermal microcalorimetry: a novel method for real-time determination of antifungal susceptibility of Aspergillus species. Clin Microbiol Infect. 2012;18:241–5.CrossRefGoogle Scholar
  23. 23.
    von Ah U, Wirz D, Daniels AU. Isothermal micro calorimetry—a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol. 2009.  https://doi.org/10.1186/1471-2180-9-106.CrossRefGoogle Scholar
  24. 24.
    Kong W, Wang J, Xing X, Xiao X, Zhao Y, Zang Q, et al. Antifungal evaluation of cholic acid and its derivatives on Candida albicans by microcalorimetry and chemometrics. Anal Chim Acta. 2011;689:250–6.CrossRefGoogle Scholar
  25. 25.
    Chihara T, Shimpo K, Beppu H, Yamamoto N, Kaneko T, Wakamatsu K, et al. Effects of aloe-emodin and emodin on proliferation of the MKN45 human gastric cancer cell line. Asian Pac J Cancer Prev APJCP. 2015;16:3887–91.CrossRefGoogle Scholar
  26. 26.
    Ding Z, Xu F, Tang J, Li G, Jiang P, Tang Z, et al. Physcion 8-O-β-glucopyranoside prevents hypoxia-induced epithelial-mesenchymal transition in colorectal cancer HCT116 cells by modulating EMMPRIN. Neoplasma. 2016;63:351–61.CrossRefGoogle Scholar
  27. 27.
    Kong WJ, Wang JB, Zang QC, Jin C, Wang ZW, Xing XY, et al. A novel “target constituent knock-out” strategy coupled with TLC, UPLC–ELSD and microcalorimetry for preliminary screening of antibacterial constituents in Calculus bovis. J Chromatogr B. 2011;879:3565–73.CrossRefGoogle Scholar
  28. 28.
    Wadsö I. Isothermal microcalorimetry in applied biology. Thermochim Acta. 2002;394:305–11.CrossRefGoogle Scholar
  29. 29.
    Kong W, Wang J, Xiao X, Chen S, Yang M. Evaluation of antibacterial effect and mode of Coptidis rhizoma by microcalorimetry coupled with chemometric techniques. Analyst. 2012;137:216–22.CrossRefGoogle Scholar
  30. 30.
    Ma Z-j, Zhang C-e, Wang R-l, Zang Q-c, Yu X-h, Wang J-B, et al. Microcalorimetry combined with chemometics for antibacterial evaluation of Sophora alopecuroides on Staphylococcus aureus. J Therm Anal Calorim. 2018;134:1883–91.CrossRefGoogle Scholar
  31. 31.
    Yi ZB, Yan Y, Liang YZ, Bao Z. Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J Pharm Biomed Anal. 2007;44:301–4.CrossRefGoogle Scholar
  32. 32.
    Yi LZ, Yuan DL, Liang YZ, Xie PS, Zhao Y. Quality control and discrimination of pericarpium citri reticulatae and pericarpium citri reticulatae viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Anal Chim Acta. 2007;588:207–15.CrossRefGoogle Scholar
  33. 33.
    Chen Y, Zhu SB, Xie MY, Nie SP, Liu W, Li C, et al. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal Chim Acta. 2008;623:146–56.CrossRefGoogle Scholar
  34. 34.
    Kong WJ, Wang JB, Jin C, Zhao YL, Dai CM, Xiao XH, et al. Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis. Appl Microbiol Biotechnol. 2009;83:1183–90.CrossRefGoogle Scholar
  35. 35.
    Fan DL, Xiao XH, Ma XJ. Calorimetric study of the effect of protoberberine alkaloids in Coptis chinensis Franch on Staphylococcus aureus growth. Thermochim Acta. 2008;480:49–52.CrossRefGoogle Scholar
  36. 36.
    Kong W, Zhao Y, Shan L, Xiao X, Guo W. Thermochemical studies on the quantity-antibacterial effect relationship of four organic acids from Radix Isatidis on Escherichia coli growth. Biol Pharmaceut Bull. 2008;31:1301–5.CrossRefGoogle Scholar
  37. 37.
    Brown AF, Murphy AG, Lalor SJ, Leech JM, O’Keeffe KM, Aogáin MM, et al. Memory Th1 cells are protective in invasive Staphylococcus aureus infection. PLoS Pathog. 2015.  https://doi.org/10.1371/journal.ppat.1005226.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schmidt T, Kock MM, Ehlers MM. Molecular characterization of staphylococcus aureus isolated from bovine mastitis and close human contacts in south african dairy herds: genetic diversity and inter-species host transmission. Front Microbiol. 2017.  https://doi.org/10.3389/fmicb.2017.00511.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bröker BM, Daniel M, Vincent P. The T cell response to Staphylococcus aureus. Pathogens. 2016.  https://doi.org/10.3390/pathogens5010031.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Z, Xue R, Cui J, Wang J, Fan W, Zhang H, et al. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int J Biol Macromol. 2019;125:376–82.CrossRefGoogle Scholar
  41. 41.
    Li X, Jiang J-H, Gu H-W, Wei D-L, Li C-H, Li X, et al. Synthesis and biothermokinetic study of a new Schiff base and its bismuth(III) complex on the growth metabolism of S. pombe and H. pylori cell lines. J Therm Anal Calorim. 2018;132:1913–22.CrossRefGoogle Scholar
  42. 42.
    Wei Y, Xie Q, Dong W, Ito Y. Separation of epigallocatechin and flavonoids from Hypericum perforatum L. by high-speed counter-current chromatography and preparative high-performance liquid chromatography. J Chromatogr A. 2009;1216:4313–8.CrossRefGoogle Scholar
  43. 43.
    Guo YX, Zhou LL, Li T, Wang LH. Preparative separation of lithospermic acid B from Salvia miltiorrhiza by polyamide resin and preparative high-performance liquid chromatography. J Chromatogr A. 2011;1218:4606–11.CrossRefGoogle Scholar
  44. 44.
    Huang XY, Fu JF, Di DL. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Sep Purif Technol. 2010;71:220–4.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Jinzhou Medical UniversityJinzhouChina

Personalised recommendations