Advertisement

Improvement of thermochromic property at low temperatures of CuMo0.94W0.06O4 by Zn substitution

  • Ikuo YanaseEmail author
  • Ryo Koda
  • Ruka Kondo
  • Risa Taiji
Article
  • 13 Downloads

Abstract

Zinc-doped copper molybdenum oxide, Zn-doped CuMo0.94W0.06O4, was synthesized, and the effects of the Zn doping on the thermochromic property of CuMo0.94W0.06O4 were investigated at low temperatures. X-ray diffractometry and diffuse reflectance UV–Vis spectroscopy clarified that Zn doping for CuMo0.94W0.06O4 promoted the structural phase transition of the γ-phase to the α-phase of CuMo0.94W0.06O4 at low temperatures and Zn-doped CuMo0.94W0.06O4 exhibited a drastic color change in the temperature range of 30–70 °C. Differential scanning calorimetry also confirmed that Zn doping changed the phase transition temperature of CuMo0.94W0.06O4. Consequently, Cu1−xZnxMo0.94W0.06O4 with x = 0.01 exhibited a larger thermal change in the diffuse reflectance spectrum in the visible light range, compared with CuMo0.94W0.06O4. An appropriate Zn-doping ratio was effective for enhancing the thermochromic property of the CuMo0.94W0.06O4 pigment in the visible region in the temperature range of 30–70 °C.

Keywords

Molybdate UV–Vis Structural phase transition Color change 

Notes

References

  1. 1.
    Katsuki H, Komarneri S. Role of α-Fe2O3 morphology on the color of red pigment for porcelain. J Am Ceram Soc. 2003;86:183–5.CrossRefGoogle Scholar
  2. 2.
    Müller M, Villalba C, Mariani Q, Dalpasquale M, Lemos Z, Huila G, Anaissi J. Synthesis and characterization of iron oxide pigments through the method of the forced hydrolysis of inorganic salts. Dyes Pigm. 2015;120:271–8.CrossRefGoogle Scholar
  3. 3.
    Sangeetha S, Basha R, Sreeram J, Sangilimuthu S, Nair B. Functional pigments from chromium(III) oxide nanoparticles. Dyes Pigm. 2012;94:548–52.CrossRefGoogle Scholar
  4. 4.
    Bae B, Tamura S, Imanaka N. Novel environment-friendly yellow pigments based in praseodymium(III) tungstate. Ceram Int. 2017;43:7366–8.CrossRefGoogle Scholar
  5. 5.
    Zhou Y, Jiang P, Lei H, Li Y, Gao W, Kuang J. Synthesis and properties of novel turquoise-green pigments based on BaAl2−xMnxO4+y. Dyes Pigm. 2018;155:212–7.CrossRefGoogle Scholar
  6. 6.
    Chen J, Xiao Y, Huang B, Sun X. Sustainable cool pigments based on iron and tungsten co-doped lanthanum cerium oxide with high NIR reflectance for energy saving. Dyes Pigm. 2018;154:1–7.CrossRefGoogle Scholar
  7. 7.
    Gramm G, Fuhrmann G, Wieser M, Schottenberger H, Huppertz H. Environmentally benign inorganic red pigments based on tetragonal β-Bi2O3. Dyes Pigm. 2019;160:9–15.CrossRefGoogle Scholar
  8. 8.
    Gaudon M, Carbonera C, Thiry A, Demourgues A, Deniard P, Payen C, Letard J, Jobic S. Adaptable thermochromism in the CuMoWO Series (0 < x < 0.1): a behavior related to a first-order phase transition with a transition temperature depending on x. Inorg Chem. 2007;46:10200–7.CrossRefGoogle Scholar
  9. 9.
    Kumar S, Maury F, Bahlawane N. Tunable thermochromic properties of V2O5 coatings. Mater Today Phys. 2017;2:1–5.CrossRefGoogle Scholar
  10. 10.
    Kim H, Yoo K, Kim Y, Yoon S. Thermochromic behaviors of boron-magnesium co-doped BiVO4 powders prepared by a hydrothermal method. Dyes Pigm. 2018;149:373–6.CrossRefGoogle Scholar
  11. 11.
    In G, et al. SrMnO3 thermochromic behavior governed by size-dependent structural distortions. Inorg Chem. 2016;55:3980–91.CrossRefGoogle Scholar
  12. 12.
    Liu H, Yuan L, Wang S, Fang H, Zhang Y, Hou C, Feng S. Structure, optical spectroscopy properties and thermochromism of Sm3Fe5O12 garnets. J Mater Chem C. 2016;4:10529–37.CrossRefGoogle Scholar
  13. 13.
    Liu H, Yuan L, Qi H, Wang S, Du Y, Zhang Y, Hou C, Feng S. In-situ optical and structural insight of reversible thermochromic materials of Sm3−xBixFe5O12 (x = 0, 0.1, 0.3, 0.5). Dyes Pigm. 2017;145:418–26.CrossRefGoogle Scholar
  14. 14.
    Heiras J, Pichardo E, Mahmood A, López T, Salas R, Siqueiros J, Castellanos M. Thermochromism in (Ba, Sr)-Mn oxides. J Phys Chem Solids. 2002;63:591–5.CrossRefGoogle Scholar
  15. 15.
    Quevedo-López M, Ramirez-Bon R, Teran OR, Gonzalez O, Angel O. Effect of a CdS interlayer in thermochromism and photochromism of MoO3 thin films. Thin Solid Films. 1999;343:202–5.CrossRefGoogle Scholar
  16. 16.
    Yanase I, Ootomo R, Kobayashi H. Effect of B substitution on thermal changes of UV-Vis and Raman spectra and color of Al2W3O12 powder. J Therm Anal Calorim. 2018;132:1–6.CrossRefGoogle Scholar
  17. 17.
    Kimiwada S, Yanase I, Kobayashi H. Phase transition and UV–Vis spectra of Al2Mo3O12-related compounds. Trans Mater Res Soc Jpn. 2011;37:95–8.CrossRefGoogle Scholar
  18. 18.
    Steiner G, Salzer R, Reichelt W, Fresenius J. Temperature dependence of the optical properties of CuMoO4. J Anal Chem. 2001;370:731–4.Google Scholar
  19. 19.
    Schwarz B, Ehrenberg H, Weitzel H, Fuess H. Investigation on the influence of particular structure parameters on the anisotropic spin-exchange interactions in the distorted wolframite-type oxides Cu(MoxW1−x)O4. Inorg Chem. 2007;46:378–80.CrossRefGoogle Scholar
  20. 20.
    Asano T, Nishimura T, Ichimura S, Inagaki Y, Kawaei T, Fukui T, Narumi Y, Kindo K, Ito T, Haravifard S, Gaulin B. Magnetic ordering and tunable structural phase transition in the chromic compound CuMoO4. J Phys Soc Jpn. 2011;80:093708-11-4.Google Scholar
  21. 21.
    Rodríguez F, Hernández D, Garcia-Jaca J, Ehrenberg H, Weitzel H. Optical study of the piezochromic transition in CuMoO4 by pressure spectroscopy. Phys Rev B. 2004;61:16497–501.CrossRefGoogle Scholar
  22. 22.
    Seevankan K, Manikandan A, Devendran P, Slimani Y, Baykal A, Alagesan T. Structural, morphological nanocatalyst as supercapacitor electrode. Ceram Int. 2018;44:200075–83.Google Scholar
  23. 23.
    Wei S, Kong X, Wang H, Mao Y, Chao M, Guo J, Liang E. Negative thermal expansion property of CuMoO4. Optik. 2018;160:61–7.CrossRefGoogle Scholar
  24. 24.
    Joseph N, Varghese J, Teirikangas M, Sebastian M, Jantunen H. Ultra-low sintering temperature ceramic composites of CuMoO4 through Ag2O addition for microwave applications. Compos B. 2018;141:214–20.CrossRefGoogle Scholar
  25. 25.
    Ehrenberg H, Weitzel H, Paulus H, Wiesmann M, Wltschek G, Geselle M, Fuess H. Crystal structure and magnetic properties of CuMoO4 at lower temperature. J Phys Chem Solids. 1997;58:153–60.CrossRefGoogle Scholar
  26. 26.
    Wiesmann M, Ehrenberg H, Miehe G, Peun T, Weitzel H, Fuess H. p-T phase diagram of CuMoO4. J Solid State Chem. 1997;132:88–97.CrossRefGoogle Scholar
  27. 27.
    Hernández D, Rodríguez F, Garcia-Jaca J, Ehrenberg H, Weitzel H. Pressure-dependence on the absorption spectrum of CuMoO4: study of the green brownish-red piezochromic phase transition at 2.5 kbar. Phys B. 1999;265:181–5.CrossRefGoogle Scholar
  28. 28.
    Yanase I, Mizuno T, Kobayashi H. Structural phase transition and thermochromic behavior of synthesized W-substituted CuMoO4. Ceram Int. 2013;39:2059–64.CrossRefGoogle Scholar
  29. 29.
    Cao F, Tian W, Li L. Ternary non-noble metal zinc–nickel–cobalt carbonate hydroxode cocatalyst toward highly efficient photoelectochemical water splitting. J Mater Sci Technol. 2018;34:899–904.CrossRefGoogle Scholar
  30. 30.
    Mohammadbeigi M, Jamilpanah L, Rahmati B, Mohseni S. Sulfurization of planar MoO3 optical crystals: Enhanced Raman response and surface porosity. Mater Res Bull. 2019;118:110527.CrossRefGoogle Scholar
  31. 31.
    Zhang W, Yin J, Min F, Jia L, Zhang D, Zhang Q. Structural phase transition and thermochromic behavior of synthesized W-substituted CuMoO4. J Mol Struct. 2017;1127:777–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Faculty of EngineeringSaitama UniversitySaitama-shiJapan

Personalised recommendations