Mn/MgAl2O4 oxygen carriers for chemical looping combustion using coal: influence of the thermal treatment on the structure and reactivity

  • Rebecca A. B. NascimentoEmail author
  • Rodolfo L. B. A. Medeiros
  • Tiago R. Costa
  • Ângelo A. S. Oliveira
  • Heloísa P. Macedo
  • Marcus A. F. Melo
  • Dulce M. A. Melo


Mn-based solid oxygen carriers supported on MgAl2O4 were prepared by the microwave-assisted combustion method followed by wet impregnation of the active phase. The oxygen carriers were characterized by X-ray diffraction, temperature-programmed reduction and scanning electron microscopy with energy-dispersive spectroscopy of the surface. The study aimed to evaluate the influence of the thermal treatment on the structure and reactivity of the oxygen carriers. Reactivity tests using coal as fuel were carried out in a thermobalance at temperatures of 750–850 °C to evaluate the behavior of the carriers. The results revealed that oxygen carriers, which were subjected to only a heat treatment after the impregnation step (MnC1), showed more reactive surfaces presenting a greater number of non-reactive and irreversible phase and thus displaying lower oxygen transport capacity as well as poorer reactivity. The carriers prepared by heat treating the support after the combustion reaction and again after the impregnation step (MnC2), showed higher oxygen transport capacity and greater reactivity with coal at 850 °C. The better reactivity is associated with the formation of Mg6MnO8 and Mn2O3 phases.


Chemical looping Coal Spinel Mg6MnO8 Microwave combustion 



The authors wish to thank the Brazilian federal agencies CAPES (National Council for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development) for financial support.


  1. 1.
    Tang M, Xu L, Fan M. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy. 2015;151:143–56. Scholar
  2. 2.
    Lyngfelt A. Chemical-looping combustion of solid fuels: status of development. Appl Energy. 2014;113:1869–73. Scholar
  3. 3.
    Ksepko E, Klimontko J, Kwiecinska A. Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes. J Therm Anal Calorim. 2019. Scholar
  4. 4.
    Sun J, Yang Y, Liu W. Evaluating redox reactivity of CuO-based oxygen carriers synthesized with organometallic precursors. J Therm Anal Calorim. 2019. Scholar
  5. 5.
    Ksepko E, Babinski P, Evdou A, Nalbandian L. Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. J Therm Anal Calorim. 2016;124(1):137–50. Scholar
  6. 6.
    Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci. 2012;38(2):215–82. Scholar
  7. 7.
    Sundqvist S, Khalilian N, Leion H, Mattisson T, Lyngfelt A. Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). J Environ Chem Eng. 2017;5(3):2552–63. Scholar
  8. 8.
    Adánez-Rubio I, Pérez-Astray A, Mendiara T, Izquierdo MT, Abad A, Gayán P, et al. Chemical looping combustion of biomass: CLOU experiments with a Cu–Mn mixed oxide. Fuel Process Technol. 2018;172:179–86. Scholar
  9. 9.
    Azimi G, Leion H, Rydén M, Mattisson T, Lyngfelt A. Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU). Energy Fuels. 2013;27(1):367–77. Scholar
  10. 10.
    Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. Chemical-Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers–oxygen release and reactivity with methane. Fuel. 2011;90(3):941–50. Scholar
  11. 11.
    Hwang JH, Baek JI, Ryu HJ, Sohn JM, Lee K-T. Development of MgMnO3−δ as an oxygen carrier material for chemical looping combustion. Fuel. 2018;231:290–6. Scholar
  12. 12.
    Rydén M, Leion H, Mattisson T, Lyngfelt A. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling. Appl Energy. 2014;113:1924–32. Scholar
  13. 13.
    Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels. 2004;18(2):371–7. Scholar
  14. 14.
    Johansson M, Mattisson T, Lyngfelt A. Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion. Ind Eng Chem Res. 2004;43(22):6978–87. Scholar
  15. 15.
    Zafar Q, Mattisson T, Gevert B. Redox Investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels. 2006;20(1):34–44. Scholar
  16. 16.
    Costa TR, Gayán P, Abad A, García-Labiano F, de Diego LF, Melo DMA, et al. Mn-based oxygen carriers prepared by impregnation for chemical looping combustion with diverse fuels. Fuel Process Technol. 2018;178:236–50. Scholar
  17. 17.
    Ganesh I. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev. 2013;58(2):63–112. Scholar
  18. 18.
    Figueredo GPD, Carvalho AFMD, Medeiros RLBDA, Silva FM, Macêdo HPD, Melo MADF, et al. Synthesis of MgAl2O4 by gelatin method: effect of temperature and time of calcination in crystalline structure. Mater Res. 2017;20:254–9.CrossRefGoogle Scholar
  19. 19.
    Habibi N, Wang Y, Arandiyan H, Rezaei M. Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol–gel method. Adv Powder Technol. 2017;28(4):1249–57. Scholar
  20. 20.
    Salem S. Technical aspect for oxidation of magnesium and aluminum nitrates to manufacture nano- and micro-sized MgAl2O4 spinel by combustion method. J Adv Ceram. 2017;6(3):187–95. Scholar
  21. 21.
    Rashad MM, Zaki ZI, El-Shall H. A novel approach for synthesis of nanocrystalline MgAl2O4 powders by co-precipitation method. J Mater Sci. 2009;44(11):2992–8. Scholar
  22. 22.
    Nehru LC, Sanjeeviraja C. Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method. J Adv Ceram. 2014;3(3):171–6. Scholar
  23. 23.
    Forouzan MR, Mousavian RT, Sharif T, Afkham YA. A three-step synthesis process of submicron boron carbide powders using microwave energy. J Therm Anal Calorim. 2015;122(2):579–88. Scholar
  24. 24.
    Deganello F, Tyagi AK. Solution combustion synthesis, energy and environment: best parameters for better materials. Prog Cryst Growth Charact Mater. 2018;64(2):23–61. Scholar
  25. 25.
    Liu G, Chen K, Li J. Combustion synthesis: an effective tool for preparing inorganic materials. Scripta Mater. 2018;157:167–73. Scholar
  26. 26.
    Ganesh I, Johnson R, Rao GVN, Mahajan YR, Madavendra SS, Reddy BM. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram Int. 2005;31(1):67–74. Scholar
  27. 27.
    Bai J, Liu J, Li C, Li G, Du Q. Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders. Adv Powder Technol. 2011;22(1):72–6. Scholar
  28. 28.
    Carvalho LS, Melo VRDME, Vitor Sobrinho E, Ruiz D, Melo DMDA. Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion. Mater Res. 2018;21(1):1–11. Scholar
  29. 29.
    Singh V, Chakradhar RPS, Rao JL, Kim D-K. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4 phosphors. J Solid State Chem. 2007;180(7):2067–74. Scholar
  30. 30.
    Jain SR, Adiga KC, Pai Verneker VR. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame. 1981;40:71–9. Scholar
  31. 31.
    Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuels. 2009;23(8):3885–92. Scholar
  32. 32.
    Valverde-Diez N, Grande-Fernández D. Ternary compounds of the system Mg–Mn–O as oxygen sensors. Solid State Ionics. 1988;28–30:1697–700. Scholar
  33. 33.
    Mariscal R, Pena MA, Fierro JLG. Promoter effects of dichloromethane on the oxidative coupling of methane over MnMgO catalysts. Appl Catal A. 1995;131(2):243–61. Scholar
  34. 34.
    Yusuf S, Neal LM, Li F. Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme. ACS Catal. 2017;7(8):5163–73. Scholar
  35. 35.
    Mariscal R, Soria J, Pena MA, Fierro JLG. Features of Li–Mn–MgO catalysts and their relevance in the oxidative coupling of methane. J Catal. 1994;147(2):535–43. Scholar
  36. 36.
    Chung EY, Wang WK, Nadgouda SG, Baser DS, Sofranko JA, Fan L-S. Catalytic oxygen carriers and process systems for oxidative coupling of methane using the chemical looping technology. Ind Eng Chem Res. 2016;55(50):12750–64. Scholar
  37. 37.
    Randhir K, King K, Rhodes N, Li L, Hahn D, Mei R, et al. Magnesium-manganese oxides for high temperature thermochemical energy storage. J Energy Storage. 2019;21:599–610. Scholar
  38. 38.
    Fang D, Xie J, Hu H, Yang H, He F, Fu Z. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chem Eng J. 2015. Scholar
  39. 39.
    Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catal Today. 1999;47(1):161–7. Scholar
  40. 40.
    Yamashita T, Vannice A. Temperature-programmed desorption of NO adsorbed on Mn2O3 and Mn3O4. Appl Catal B. 1997;13(2):141–55. Scholar
  41. 41.
    Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Int J Greenh Gas Control. 2015;43:179–88. Scholar
  42. 42.
    Costa TR, Gayán P, Abad A, García-Labiano F, de Diego LF, Melo DMA, et al. Promising impregnated Mn-based oxygen carriers for chemical looping combustion of gaseous fuels. Energy Proc. 2017;114:334–43. Scholar
  43. 43.
    Oliveira VAG, Brett NH. Phase equilibria in the system MgO–Mn2O3–MnO–CaSiO3 in air. J Phys Colloq. 1986;47(C1):C1-453–9.CrossRefGoogle Scholar
  44. 44.
    Medeiros RLBA, Macedo HP, Figueredo GP, Costa TR, Braga RM, Melo MAF, et al. Study of the reactivity by pulse of CH4 over NiO/Fe-doped MgAl2O4 oxygen carriers for hydrogen production. Int J Hydrog Energy. 2017;42(39):24823–9. Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Rebecca A. B. Nascimento
    • 1
    • 2
    Email author
  • Rodolfo L. B. A. Medeiros
    • 2
  • Tiago R. Costa
    • 3
  • Ângelo A. S. Oliveira
    • 2
  • Heloísa P. Macedo
    • 2
  • Marcus A. F. Melo
    • 1
    • 2
    • 4
  • Dulce M. A. Melo
    • 1
    • 2
    • 5
  1. 1.Postgraduate Program in Materials Science and EngineeringFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Environmental Technology Laboratory (LabTam)Federal University of Rio Grande do NorteNatalBrazil
  3. 3.Chemistry DepartmentFederal Institute of Education, Science and Technology of Rio Grande do NorteNatalBrazil
  4. 4.Postgraduate Program in Chemical EngineeringFederal University of Rio Grande do NorteNatalBrazil
  5. 5.Postgraduate Program in ChemistryFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations