Advertisement

Mn/MgAl2O4 oxygen carriers for chemical looping combustion using coal: influence of the thermal treatment on the structure and reactivity

  • Rebecca A. B. NascimentoEmail author
  • Rodolfo L. B. A. Medeiros
  • Tiago R. Costa
  • Ângelo A. S. Oliveira
  • Heloísa P. Macedo
  • Marcus A. F. Melo
  • Dulce M. A. Melo
Article
  • 21 Downloads

Abstract

Mn-based solid oxygen carriers supported on MgAl2O4 were prepared by the microwave-assisted combustion method followed by wet impregnation of the active phase. The oxygen carriers were characterized by X-ray diffraction, temperature-programmed reduction and scanning electron microscopy with energy-dispersive spectroscopy of the surface. The study aimed to evaluate the influence of the thermal treatment on the structure and reactivity of the oxygen carriers. Reactivity tests using coal as fuel were carried out in a thermobalance at temperatures of 750–850 °C to evaluate the behavior of the carriers. The results revealed that oxygen carriers, which were subjected to only a heat treatment after the impregnation step (MnC1), showed more reactive surfaces presenting a greater number of non-reactive and irreversible phase and thus displaying lower oxygen transport capacity as well as poorer reactivity. The carriers prepared by heat treating the support after the combustion reaction and again after the impregnation step (MnC2), showed higher oxygen transport capacity and greater reactivity with coal at 850 °C. The better reactivity is associated with the formation of Mg6MnO8 and Mn2O3 phases.

Keywords

Chemical looping Coal Spinel Mg6MnO8 Microwave combustion 

Notes

Acknowledgements

The authors wish to thank the Brazilian federal agencies CAPES (National Council for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development) for financial support.

References

  1. 1.
    Tang M, Xu L, Fan M. Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy. 2015;151:143–56.  https://doi.org/10.1016/j.apenergy.2015.04.017.CrossRefGoogle Scholar
  2. 2.
    Lyngfelt A. Chemical-looping combustion of solid fuels: status of development. Appl Energy. 2014;113:1869–73.  https://doi.org/10.1016/j.apenergy.2013.05.043.CrossRefGoogle Scholar
  3. 3.
    Ksepko E, Klimontko J, Kwiecinska A. Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08214-8.CrossRefGoogle Scholar
  4. 4.
    Sun J, Yang Y, Liu W. Evaluating redox reactivity of CuO-based oxygen carriers synthesized with organometallic precursors. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08492-2.CrossRefGoogle Scholar
  5. 5.
    Ksepko E, Babinski P, Evdou A, Nalbandian L. Studies on the redox reaction kinetics of selected, naturally occurring oxygen carrier. J Therm Anal Calorim. 2016;124(1):137–50.  https://doi.org/10.1007/s10973-015-5107-x.CrossRefGoogle Scholar
  6. 6.
    Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF. Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci. 2012;38(2):215–82.  https://doi.org/10.1016/j.pecs.2011.09.001.CrossRefGoogle Scholar
  7. 7.
    Sundqvist S, Khalilian N, Leion H, Mattisson T, Lyngfelt A. Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). J Environ Chem Eng. 2017;5(3):2552–63.  https://doi.org/10.1016/j.jece.2017.05.007.CrossRefGoogle Scholar
  8. 8.
    Adánez-Rubio I, Pérez-Astray A, Mendiara T, Izquierdo MT, Abad A, Gayán P, et al. Chemical looping combustion of biomass: CLOU experiments with a Cu–Mn mixed oxide. Fuel Process Technol. 2018;172:179–86.  https://doi.org/10.1016/j.fuproc.2017.12.010.CrossRefGoogle Scholar
  9. 9.
    Azimi G, Leion H, Rydén M, Mattisson T, Lyngfelt A. Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU). Energy Fuels. 2013;27(1):367–77.  https://doi.org/10.1021/ef301120r.CrossRefGoogle Scholar
  10. 10.
    Shulman A, Cleverstam E, Mattisson T, Lyngfelt A. Chemical-Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers–oxygen release and reactivity with methane. Fuel. 2011;90(3):941–50.  https://doi.org/10.1016/j.fuel.2010.11.044.CrossRefGoogle Scholar
  11. 11.
    Hwang JH, Baek JI, Ryu HJ, Sohn JM, Lee K-T. Development of MgMnO3−δ as an oxygen carrier material for chemical looping combustion. Fuel. 2018;231:290–6.  https://doi.org/10.1016/j.fuel.2018.05.111.CrossRefGoogle Scholar
  12. 12.
    Rydén M, Leion H, Mattisson T, Lyngfelt A. Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling. Appl Energy. 2014;113:1924–32.  https://doi.org/10.1016/j.apenergy.2013.06.016.CrossRefGoogle Scholar
  13. 13.
    Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A, Palacios JM. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels. 2004;18(2):371–7.  https://doi.org/10.1021/ef0301452.CrossRefGoogle Scholar
  14. 14.
    Johansson M, Mattisson T, Lyngfelt A. Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion. Ind Eng Chem Res. 2004;43(22):6978–87.  https://doi.org/10.1021/ie049813c.CrossRefGoogle Scholar
  15. 15.
    Zafar Q, Mattisson T, Gevert B. Redox Investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels. 2006;20(1):34–44.  https://doi.org/10.1021/ef0501389.CrossRefGoogle Scholar
  16. 16.
    Costa TR, Gayán P, Abad A, García-Labiano F, de Diego LF, Melo DMA, et al. Mn-based oxygen carriers prepared by impregnation for chemical looping combustion with diverse fuels. Fuel Process Technol. 2018;178:236–50.  https://doi.org/10.1016/j.fuproc.2018.05.019.CrossRefGoogle Scholar
  17. 17.
    Ganesh I. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev. 2013;58(2):63–112.  https://doi.org/10.1179/1743280412Y.0000000001.CrossRefGoogle Scholar
  18. 18.
    Figueredo GPD, Carvalho AFMD, Medeiros RLBDA, Silva FM, Macêdo HPD, Melo MADF, et al. Synthesis of MgAl2O4 by gelatin method: effect of temperature and time of calcination in crystalline structure. Mater Res. 2017;20:254–9.CrossRefGoogle Scholar
  19. 19.
    Habibi N, Wang Y, Arandiyan H, Rezaei M. Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol–gel method. Adv Powder Technol. 2017;28(4):1249–57.  https://doi.org/10.1016/j.apt.2017.02.012.CrossRefGoogle Scholar
  20. 20.
    Salem S. Technical aspect for oxidation of magnesium and aluminum nitrates to manufacture nano- and micro-sized MgAl2O4 spinel by combustion method. J Adv Ceram. 2017;6(3):187–95.  https://doi.org/10.1007/s40145-017-0230-8.CrossRefGoogle Scholar
  21. 21.
    Rashad MM, Zaki ZI, El-Shall H. A novel approach for synthesis of nanocrystalline MgAl2O4 powders by co-precipitation method. J Mater Sci. 2009;44(11):2992–8.  https://doi.org/10.1007/s10853-009-3397-8.CrossRefGoogle Scholar
  22. 22.
    Nehru LC, Sanjeeviraja C. Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method. J Adv Ceram. 2014;3(3):171–6.  https://doi.org/10.1007/s40145-014-0101-5.CrossRefGoogle Scholar
  23. 23.
    Forouzan MR, Mousavian RT, Sharif T, Afkham YA. A three-step synthesis process of submicron boron carbide powders using microwave energy. J Therm Anal Calorim. 2015;122(2):579–88.  https://doi.org/10.1007/s10973-015-4734-6.CrossRefGoogle Scholar
  24. 24.
    Deganello F, Tyagi AK. Solution combustion synthesis, energy and environment: best parameters for better materials. Prog Cryst Growth Charact Mater. 2018;64(2):23–61.  https://doi.org/10.1016/j.pcrysgrow.2018.03.001.CrossRefGoogle Scholar
  25. 25.
    Liu G, Chen K, Li J. Combustion synthesis: an effective tool for preparing inorganic materials. Scripta Mater. 2018;157:167–73.  https://doi.org/10.1016/j.scriptamat.2018.08.022.CrossRefGoogle Scholar
  26. 26.
    Ganesh I, Johnson R, Rao GVN, Mahajan YR, Madavendra SS, Reddy BM. Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder. Ceram Int. 2005;31(1):67–74.  https://doi.org/10.1016/j.ceramint.2004.03.036.CrossRefGoogle Scholar
  27. 27.
    Bai J, Liu J, Li C, Li G, Du Q. Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders. Adv Powder Technol. 2011;22(1):72–6.  https://doi.org/10.1016/j.apt.2010.03.013.CrossRefGoogle Scholar
  28. 28.
    Carvalho LS, Melo VRDME, Vitor Sobrinho E, Ruiz D, Melo DMDA. Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion. Mater Res. 2018;21(1):1–11.  https://doi.org/10.1590/1980-5373-MR-2017-0189.CrossRefGoogle Scholar
  29. 29.
    Singh V, Chakradhar RPS, Rao JL, Kim D-K. Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4 phosphors. J Solid State Chem. 2007;180(7):2067–74.  https://doi.org/10.1016/j.jssc.2007.04.030.CrossRefGoogle Scholar
  30. 30.
    Jain SR, Adiga KC, Pai Verneker VR. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame. 1981;40:71–9.  https://doi.org/10.1016/0010-2180(81)90111-5.CrossRefGoogle Scholar
  31. 31.
    Siriwardane R, Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuels. 2009;23(8):3885–92.  https://doi.org/10.1021/ef9001605.CrossRefGoogle Scholar
  32. 32.
    Valverde-Diez N, Grande-Fernández D. Ternary compounds of the system Mg–Mn–O as oxygen sensors. Solid State Ionics. 1988;28–30:1697–700.  https://doi.org/10.1016/0167-2738(88)90445-6.CrossRefGoogle Scholar
  33. 33.
    Mariscal R, Pena MA, Fierro JLG. Promoter effects of dichloromethane on the oxidative coupling of methane over MnMgO catalysts. Appl Catal A. 1995;131(2):243–61.  https://doi.org/10.1016/0926-860X(95)00138-7.CrossRefGoogle Scholar
  34. 34.
    Yusuf S, Neal LM, Li F. Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme. ACS Catal. 2017;7(8):5163–73.  https://doi.org/10.1021/acscatal.7b02004.CrossRefGoogle Scholar
  35. 35.
    Mariscal R, Soria J, Pena MA, Fierro JLG. Features of Li–Mn–MgO catalysts and their relevance in the oxidative coupling of methane. J Catal. 1994;147(2):535–43.  https://doi.org/10.1006/jcat.1994.1170.CrossRefGoogle Scholar
  36. 36.
    Chung EY, Wang WK, Nadgouda SG, Baser DS, Sofranko JA, Fan L-S. Catalytic oxygen carriers and process systems for oxidative coupling of methane using the chemical looping technology. Ind Eng Chem Res. 2016;55(50):12750–64.  https://doi.org/10.1021/acs.iecr.6b03304.CrossRefGoogle Scholar
  37. 37.
    Randhir K, King K, Rhodes N, Li L, Hahn D, Mei R, et al. Magnesium-manganese oxides for high temperature thermochemical energy storage. J Energy Storage. 2019;21:599–610.  https://doi.org/10.1016/j.est.2018.11.024.CrossRefGoogle Scholar
  38. 38.
    Fang D, Xie J, Hu H, Yang H, He F, Fu Z. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chem Eng J. 2015.  https://doi.org/10.1016/j.cej.2015.02.072.CrossRefGoogle Scholar
  39. 39.
    Stobbe ER, de Boer BA, Geus JW. The reduction and oxidation behaviour of manganese oxides. Catal Today. 1999;47(1):161–7.  https://doi.org/10.1016/S0920-5861(98)00296-X.CrossRefGoogle Scholar
  40. 40.
    Yamashita T, Vannice A. Temperature-programmed desorption of NO adsorbed on Mn2O3 and Mn3O4. Appl Catal B. 1997;13(2):141–55.  https://doi.org/10.1016/S0926-3373(96)00099-9.CrossRefGoogle Scholar
  41. 41.
    Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). Int J Greenh Gas Control. 2015;43:179–88.  https://doi.org/10.1016/j.ijggc.2015.10.027.CrossRefGoogle Scholar
  42. 42.
    Costa TR, Gayán P, Abad A, García-Labiano F, de Diego LF, Melo DMA, et al. Promising impregnated Mn-based oxygen carriers for chemical looping combustion of gaseous fuels. Energy Proc. 2017;114:334–43.  https://doi.org/10.1016/j.egypro.2017.03.1906.CrossRefGoogle Scholar
  43. 43.
    Oliveira VAG, Brett NH. Phase equilibria in the system MgO–Mn2O3–MnO–CaSiO3 in air. J Phys Colloq. 1986;47(C1):C1-453–9.CrossRefGoogle Scholar
  44. 44.
    Medeiros RLBA, Macedo HP, Figueredo GP, Costa TR, Braga RM, Melo MAF, et al. Study of the reactivity by pulse of CH4 over NiO/Fe-doped MgAl2O4 oxygen carriers for hydrogen production. Int J Hydrog Energy. 2017;42(39):24823–9.  https://doi.org/10.1016/j.ijhydene.2017.08.019.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Rebecca A. B. Nascimento
    • 1
    • 2
    Email author
  • Rodolfo L. B. A. Medeiros
    • 2
  • Tiago R. Costa
    • 3
  • Ângelo A. S. Oliveira
    • 2
  • Heloísa P. Macedo
    • 2
  • Marcus A. F. Melo
    • 1
    • 2
    • 4
  • Dulce M. A. Melo
    • 1
    • 2
    • 5
  1. 1.Postgraduate Program in Materials Science and EngineeringFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Environmental Technology Laboratory (LabTam)Federal University of Rio Grande do NorteNatalBrazil
  3. 3.Chemistry DepartmentFederal Institute of Education, Science and Technology of Rio Grande do NorteNatalBrazil
  4. 4.Postgraduate Program in Chemical EngineeringFederal University of Rio Grande do NorteNatalBrazil
  5. 5.Postgraduate Program in ChemistryFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations