Advertisement

Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder

  • Mohammad Mohsen Peiravi
  • Javad AlinejadEmail author
Article
  • 32 Downloads

Abstract

The innovation of this study is to investigate the combination effect of thermal radiation and convection in the hybrid heat transfer between solid and fluid in a channel. The lattice Boltzmann method based on the D2Q9 scheme has been utilized for modeling fluid and temperature fields. Streamlines, isotherms, vortices and Nusselt numbers along the wall surfaces have been investigated for different Reynolds numbers (Re = 10, Re = 60, Re = 133.3), Peclet numbers (Pe = 7.1, Pe = 42.6, Pe = 94.7), the emission coefficients (ε = 0.3, ε = 0.7, ε = 1), radiation coefficients (RP = 0.010, RP = 0.015, RP = 0.020) and diffusion coefficients (αs = αf, αs = αf/2, αs = 2αf). The mean Nusselt number (Num) fluctuations have been analyzed for different cases to predict optimal levels of effective factors of this simulation in order to maximize and minimize the heat transfer rate. The results show that by increasing the Reynolds number to Re = 133.3, the maximum average Nusselt number can be changed by more than 9.249 time. Also by increasing the thermal diffusion coefficient to αs = 2αf, the minimum average Nusselt number can be changed by less than − 0.687 time.

Keywords

Channel internal flow Hybrid heat transfer Lattice Boltzmann method Rectangular cylinder Thermal radiation 

List of symbols

ci

Lattice velocity

cs

Speed of sound

K

Thermal conductivity (W m−1 K−1)

kb

Boltzmann constant

qr

Radiation source term

fi

Particle density distribution function

\(f_{\text{i}}^{\text{eq}}\)

Equilibrium particle density distribution function

gi

Particle energy distribution function

\(g_{\text{i}}^{\text{eq}}\)

Equilibrium particle energy distribution function

gy

Gravitational acceleration (m s−2)

L

Length of channel (m)

Num

Mean Nusselt number

Nuy

Local Nusselt number (h.x/k)

Pe

Peclet number (Re.Pr)

Pr

Prandtel number (υ/α)

Ra

Rayleigh number (g.βT.L3/υ.α)

Re

Reynolds number (u.L/υ)

Th

Wall temperature (K)

Tc

Internal dimensionless temperature (K)

RP

Radiation overall parameter

CD

Drag coefficient

CL

Lift coefficient

u, v

Velocity vectors (m s−1)

x, y

Coordinates (m)

n1, n2

Relaxation time constants

Greek letters

α

Thermal diffusivity (m2 s−1)

µ

Dynamic viscosity (kg m−1 s−1)

ρ

Density (kg m−3)

β

Thermal expansion coefficient (1/K)

τv

Relaxation time relating to flow field

τc

Relaxation time of temperature field

υ

Kinematic viscosity (m2 s−1)

θ

Dimensionless temperature

ΔT

Temperature difference (K)

Subscripts

i

Direction of lattice link

t

Top

b

Bottom

l

Left

r

Right

h

Hot

D

Drag

L

Lift

Notes

References

  1. 1.
    McNamara GR, Zanetti G. Three dimensional lattice Boltzmann simulation of steady and transient finned natural convection problems with evaluation of different forcing and conjugate heat transfer schemes. Comput Math Appl. 2017;74:1362–78.CrossRefGoogle Scholar
  2. 2.
    Wolf-Gladrow DA. Lattice-gas cellular automata and lattice Boltzmann models. 1st ed. Berlin: Springer; 2000.CrossRefGoogle Scholar
  3. 3.
    Alinejad J, Hosseinnejad F. Aerodynamic optimization in the rotor of centrifugal fan using combined laser Doppler anemometry and CFD modeling. World Appl Sci J. 2012;17:1316–23.Google Scholar
  4. 4.
    Alinejad J, Montazerin N, Samarbakhsh S. Accretion of the efficiency of a forward-curved centrifugal fan by modification of the rotor geometry: computational and experimental study. Int J Fluid Mech Res. 2013;40:469–81.CrossRefGoogle Scholar
  5. 5.
    Esfahani JA, Alinejad J. Lattice Boltzmann simulation of viscous-fluid flow and conjugate heat transfer in a rectangular cavity with a heated moving wall. Thermophys Aeromech. 2013;20:613–20.CrossRefGoogle Scholar
  6. 6.
    Esfahani JA, Alinejad J. Entropy generation of conjugate natural convection in enclosures: the lattice Boltzmann method. J Thermophys Heat Transf. 2013;27:498–505.CrossRefGoogle Scholar
  7. 7.
    Mezrhab A, Moussaoui MA, Jami M, Naji H, Bouzidi M. Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys Lett A. 2010;374:3499–507.CrossRefGoogle Scholar
  8. 8.
    He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998;146:282–300.CrossRefGoogle Scholar
  9. 9.
    Alinejad J, Fallah K. Taguchi optimization approach for three-dimensional nanofluid natural convection in a transformable enclosure. J Thermophys Heat Transf. 2016;31:211–7.CrossRefGoogle Scholar
  10. 10.
    Fallah K, Gerdroodbary MB, Ghaderi A, Alinejad J. The influence of micro air jets on mixing augmentation of fuel in cavity flameholder at supersonic flow. Aerosp Sci Technol. 2018;76:187–93.CrossRefGoogle Scholar
  11. 11.
    Alinejad J, Esfahani JA. Lattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection. Transp Phenom Nano Micro Scales. 2016;4:36–43.Google Scholar
  12. 12.
    Alinejad J, Esfahani JA. Lattice Boltzmann simulation of forced convection over an electronic board with multiple obstacles. Heat Transf Res. 2014;45:241–62.Google Scholar
  13. 13.
    Alinejad J, Esfahani JA. Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity. Meccanica. 2017;52:925–38.CrossRefGoogle Scholar
  14. 14.
    Alinejad J, Esfahani JA. Optimization of 3-D natural convection around the isothermal cylinder using Taguchi method. Transp Phenom Nano Micro Scales. 2018;6:49–59.Google Scholar
  15. 15.
    Alinejad J, Esfahani JA. Numerical stabilization of three-dimensional turbulent natural convection around isothermal cylinder. J Thermophys Heat Transf. 2015;30:94–102.CrossRefGoogle Scholar
  16. 16.
    Wang L, Chen Z, Meng H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures. Appl Therm Eng. 2013;54:237–46.CrossRefGoogle Scholar
  17. 17.
    Brambilla A, Frouzakis C, Mantzaras J, Tomboulides A, Kerkemeier S, Boulouchos K. Detailed transient numerical simulation of H2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer. Combust Flame. 2014;161:2692–707.CrossRefGoogle Scholar
  18. 18.
    Hegde S, Ganasekaran NGN. Conjugate heat transfer studies in a hexagonal micro channel. Procedia Eng. 2015;127:719–26.CrossRefGoogle Scholar
  19. 19.
    Xia Ch, Fuab J, Laiab J, Yaoab X, Chen Z. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng. 2015;90:1032–42.CrossRefGoogle Scholar
  20. 20.
    Flageul C, Benhamadouche S, Lamballais É, Laurence D. DNS of turbulent channel flow with conjugate heat transfer: effect of thermal boundary conditions on the second moments and budgets. Int J Heat Fluid Flow. 2015;55:34–44.CrossRefGoogle Scholar
  21. 21.
    Nimmagadd R, Venkatasubbaiah K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur J Mech-B/Fluids. 2015;52:19–27.CrossRefGoogle Scholar
  22. 22.
    Mensch A, Thole KA. Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall. Int J Heat Mass Transf. 2015;82:66–77.CrossRefGoogle Scholar
  23. 23.
    Knupp DC, Cotta RM, Naveira-Cotta CP. Lattice Boltzmann method and its applications in engineering. Int J Heat Mass Transf. 2015;82:479–89.CrossRefGoogle Scholar
  24. 24.
    Li HY, Yap YF, Lou J, Chai JC, Shang Z. Numerical investigation of conjugated heat transfer in a channel with a moving depositing front. Int J Therm Sci. 2015;88:136–47.CrossRefGoogle Scholar
  25. 25.
    Scholl S, Verstraete T, Duchaine F, Gicquel L. Conjugate heat transfer of a rib-roughened internal turbine blade cooling channel using large eddy simulation. Int J Heat Fluid Flow. 2016;61:650–64.CrossRefGoogle Scholar
  26. 26.
    Satish N, Venkatasubbaiah K. Conjugate heat transfer analysis of turbulent forced convection of moving plate in a channel flow. Appl Therm Eng. 2016;100:987–98.CrossRefGoogle Scholar
  27. 27.
    Wu Zh, Laurence D, Iacovides H, Afgan I. Direct simulation of conjugate heat transfer of jet in channel crossflow. Int J Heat Mass Transf. 2017;110:193–208.CrossRefGoogle Scholar
  28. 28.
    Sung JJ, Kim J. Conjugate heat transfer by oscillating flow in a parallel-plate channel subject to a sinusoidal wall temperature distribution. Appl Therm Eng. 2017;123:1462–72.CrossRefGoogle Scholar
  29. 29.
    Gaikwad HS, Mondal PK, Wongwises S. Non-linear drag induced entropy generation analysis in a microporous channel: the effect of conjugate heat transfer. Int J Heat Mass Transf. 2017;108:2217–28.CrossRefGoogle Scholar
  30. 30.
    Bahreini M, Ramiar A, Ranjbar AA. Numerical simulation of subcooled flow boiling under conjugate heat transfer and microgravity condition in a vertical mini channel. Appl Therm Eng. 2017;113:170–85.CrossRefGoogle Scholar
  31. 31.
    Al-Asadi MT, Al-kasmoul FS, Wilson MCT. Benefits of spanwise gaps in cylindrical vortex generators for conjugate heat transfer enhancement in micro-channels. Appl Therm Eng. 2018;130:571–86.CrossRefGoogle Scholar
  32. 32.
    Nouanegue H, Muftuoglu A, Bilgen E. Conjugate heat transfer by natural convection, conduction and radiation in open cavities. Int J Heat Mass Transf. 2008;51:6054–62.CrossRefGoogle Scholar
  33. 33.
    Albanakis C, Bouris D. 3D conjugate heat transfer with thermal radiation in a hollow cube exposed to external flow. Int J Heat Mass Transf. 2008;51:6157–68.CrossRefGoogle Scholar
  34. 34.
    Antar MA. Thermal radiation role in conjugate heat transfer across a multiple-cavity building block. Energy. 2010;35:3508–16.CrossRefGoogle Scholar
  35. 35.
    Dogan M, Sivrioglu M, Yılmaz O. Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate—a conjugate analysis. Energy Convers Manag. 2014;77:78–88.CrossRefGoogle Scholar
  36. 36.
    Cintolesi C, Nilsson H, Petronio A, Armenio V. Numerical simulation of conjugate heat transfer and surface radiative heat transfer using the P1 thermal radiation model: parametric study in benchmark cases. Int J Heat Mass Transf. 2017;107:956–71.CrossRefGoogle Scholar
  37. 37.
    Mezrhab A, Jami M, Abid C, Bouzidi M, Lallemand P. Lattice Boltzmann modeling of natural convection in an inclined square enclosure with partitions attached to its cold wall. Int J Heat Fluid Flow. 2006;27:456–65.CrossRefGoogle Scholar
  38. 38.
    Steggel N. A numerical investigation of the flow around rectangular cylinders. Thesis for Doctor of Philosophy, School of Mechanical and Materials Engineering, The University of Surrey Guildford, UK. 1998.Google Scholar
  39. 39.
    Chen X, Sun C, Xi X, Liu R, Wang F. Conjugated heat transfer analysis of a foam filled double-pipe heat exchanger for high-temperature application. Int J Heat Mass Transf. 2019;134:1003–13.CrossRefGoogle Scholar
  40. 40.
    Favre F, Antepara O, Oliet C, Lehmkuhl O, Perez-Segarra CD. An immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna. Appl Therm Eng. 2019;148:907–28.CrossRefGoogle Scholar
  41. 41.
    Domari Ganji D, Peiravi MM, Abbasi M. Evaluation of the heat transfer rate increases in retention pools nuclear waste. Int J Nano Dimens. 2015;6:385–98.Google Scholar
  42. 42.
    Peiravi MM, Alinejad J, Domari Ganji D, Maddah S. Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure. Transp Phenom Nano Micro Scales. 2019.  https://doi.org/10.22111/tpnms.2019.27933.1164.CrossRefGoogle Scholar
  43. 43.
    Peiravi MM, Alinejad J, Domari Ganji D, Maddah S. 3D optimization of baffle arrangement in a multi-phase nanofluid natural convection based on numerical simulation. Int J Numer Methods Heat Fluid Flow. 2019.  https://doi.org/10.1108/HFF-01-2019-0012.CrossRefGoogle Scholar
  44. 44.
    Ross-Jones J, Gaedtke M, Sonnick S, Rädle M, Nirschl H, Krause MJ. Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods. Comput Math Appl. 2019;77:209–21.CrossRefGoogle Scholar
  45. 45.
    Karakovskay KI, Vikulov ES, Ilyin IY, Piryazev DA, Sysoev SV, Morozov NB. Synthesis, structure and thermal investigation of a new volatile iridium(I) complex with cyclooctadiene and methoxy-substituted β-diketonate. J Therm Anal Calorim. 2019;137:931–40.CrossRefGoogle Scholar
  46. 46.
    Gao M, Wan M, Zhou X. Thermal degradation and flame retardancy of flexible polyvinyl chloride containing solid superacid. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08219-3.CrossRefGoogle Scholar
  47. 47.
    Wu M, Nie Q, Li Y, Chen W, Yue X, Zhang Y. Multi-objective optimization of a new special-shaped tube for heating deicing fluid. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08302-9.CrossRefGoogle Scholar
  48. 48.
    Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019;137:965–82.CrossRefGoogle Scholar
  49. 49.
    Zhang F, Yuan Z. The detection and evaluation for the internal defection in industrial pipeline based on the virtual heat source temperature field. J Therm Anal Calorim. 2019;137:949–64.CrossRefGoogle Scholar
  50. 50.
    Purusothaman A, Murugesan K, Chamkha AJ. 3D modeling of natural convective heat transfer from a varying rectangular heat generating source. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08259-9.CrossRefGoogle Scholar
  51. 51.
    Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08402-6.CrossRefGoogle Scholar
  52. 52.
    Ferhi M, Djebali R, Abboudi S, Kharroubi H. Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08276-8.CrossRefGoogle Scholar
  53. 53.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26.  https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.169.CrossRefGoogle Scholar
  54. 54.
    Banda MK, Klar A, Seaid M. A lattice-Boltzmann relaxation scheme for coupled convection–radiation systems. J. Comput. Phys. 2007;226:1408–31.  https://doi.org/10.1016/j.jcp.2007.05.030.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Sari BranchIslamic Azad UniversitySariIran

Personalised recommendations