Advertisement

Silver–water nanofluid flow and convective heat transfer in a microfin tube equipped with loose-fit twisted tapes

  • P. Samruaisin
  • K. Wongcharee
  • V. ChuwattanakulEmail author
  • S. Eiamsa-ard
Article
  • 13 Downloads

Abstract

Heat transfer enhancement and performance of compact heat exchangers have been extensively studied in the past century for the purpose of promoting energy efficiency. Microfin tubes in single/two/multiple-phase flow heat exchangers into which twisted tape swirl generators are installed can promote heat transfer with a moderate pressure loss penalty. This article reports on the enhanced heat transfer of silver–water nanofluids in a microfin tube into which loose-fit twisted tapes are installed in a counter-flow arrangement. The experiments were carried out using nanofluids with various silver concentrations (0.007–0.03 vol%), loose-fit twisted tapes with clearance ratios (c/D) of 0.0 (tight-fit), 0.05, 0.075 and 0.1, for a twist ratio, y/W, of 2.0. The results indicate that the heat transfer rate (Nu) and pressure drop (f) increase with a decrease in clearance ratio (c/D) and increase in silver (Ag) nanoparticle concentration. Additionally, the thermal performance factor tends to increase with the decrease in Reynolds numbers.

Keywords

Heat transfer Friction factor Thermal performance Microfin tube Loose-fit twisted tapes Silver–water nanofluids 

List of symbols

A

Heat transfer surface area (m2)

cp,w

Specific heat capacity of water (J kg−1 K−1)

cp,np

Specific heat capacity of silver nanoparticle (J kg−1 K−1)

c

Clearance between the edge of fin and tape (m)

Dh

Hydraulic diameter of the microfin tube (m)

f

Friction factor

h

Heat transfer coefficient (W m−2 K−1)

kw

Thermal conductivity of water (W m−1 K−1)

knf

Thermal conductivity of silver–water nanofluid (W m−1 K−1)

knp

Thermal conductivity of silver nanoparticle (W m−1 K−1)

L

Length of the test tube (m)

\(\dot{m}\)

Mass flow rate (kg s−1)

Nu

Nusselt number

P

Pressure of flow (Pa)

ΔP

Pressure drop (Pa)

Pr

Prandtl number

Q

Heat transfer rate (W)

Re

Reynolds number

T

Temperature (K)

\(\tilde{T}\)

Mean temperature (K)

u

Mean axial flow velocity (m s−1)

W

Twisted tape width (m)

y

Twist length (m)

Greek symbols

ϕ

Silver–water nanofluid concentration (% by volume)

ρ

Fluid density (kg m−3)

δ

Twisted tape thickness (m)

μ

Fluid dynamic viscosity (kg s−1 m−1)

η

Thermal performance factor

Subscripts

b

Bulk

con

Convection

c

Cold

E

Enhanced

NE

Not enhanced

nf

Nanofluid

np

Nanoparticle

w

Wall/water

Abbreviations

C-MF

Microfin tube fitted with twisted tape in counter arrangement

MF

Microfin tube

Notes

References

  1. 1.
    K. Fuji, N. Itoh, T. Innanu, H. Kimura, N. Nakaqama, T. Yanugldi, Heat transfer pipe. U.S. Patent 4044797, assigned to Hitachi Ltd. 1977.Google Scholar
  2. 2.
    Webb RL. Principles of enhanced heat transfer, chapters 13 and 14. New York: Wiley; 1994.Google Scholar
  3. 3.
    Chsmra LM, Webb RL. Advanced micro-fin tubes for condensation. Int J Heat Mass Transf. 1996;39:1839–46.CrossRefGoogle Scholar
  4. 4.
    Shinohara Y, Tobe M. Development of an improved thermofin tube. Hitachi Cable Rev. 1985;4:47–50.Google Scholar
  5. 5.
    Chsmra LM, Webb RL. Advanced micro-fin tubes for condensation. Int J Heat Mass Transf. 1996;39:1827–38.CrossRefGoogle Scholar
  6. 6.
    Brognaux LJ, Webb RL, Chamra LM. Single phase heat transfer in micro fin tubes. Int J Heat Mass Transf. 1997;40:4345–57.CrossRefGoogle Scholar
  7. 7.
    Mukkamala Y, Sunderesan R. Single phase pressure drop and heat transfer measurements in a horizontal microfin tube in the transition regime. J Enhanc Heat Transf. 2009;16(2):1–19.CrossRefGoogle Scholar
  8. 8.
    Bharadwaj P, Khondge AD, Date AW. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. Int J Heat Mass Transf. 2009;52(7–8):1938–44.CrossRefGoogle Scholar
  9. 9.
    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian flows, Vol. 66. New York: ASME; 1995. p. 99–105.Google Scholar
  10. 10.
    Derakhshan MM, Akhavan-Behabadi MA. An empirical study on fluid properties and pressure drop of nanofluid flow inside inclined smooth and microfin tubes. Int Commun Heat Mass Transf. 2015;65:111–6.CrossRefGoogle Scholar
  11. 11.
    Derakhshan MM, Akhavan-Behabadi MA. Mixed convection of MWCNT-heat transfer oil nanofluid inside inclined plain and microfin tubes under laminar assisted flow. Int J Therm Sci. 2016;99:1–8.CrossRefGoogle Scholar
  12. 12.
    Al-Fahed S, Chamra LM, Chakroun W. Pressure drop and heat transfer comparison for both microfin tube and twisted-tape inserts in laminar flow. Exp Thermal Fluid Sci. 1998;18:323–33.CrossRefGoogle Scholar
  13. 13.
    Nagarajan PK, Mukkamala Y, Sivashanmugam P. Studies on heat transfer and friction factor characteristics of turbulent flow through a micro-finned tube fitted with left-right inserts. Appl Therm Eng. 2010;30:1666–72.CrossRefGoogle Scholar
  14. 14.
    Eiamsa-ard S, Kongkaitpaiboon V, Eiamsa-ard P, Pimsarn M. Turbulent heat transfer in a microfin tube with twisted tape insert. In: 2012 AIChE annual meeting, AIChE 2012; Pittsburgh, PA; United States; 28 October 2012 through 2 November 2012; Code 94591, 11p.Google Scholar
  15. 15.
    Eiamsa-ard S, Wongcharee K. Heat transfer characteristics in micro-fin tube equipped with double twisted tapes: effect of twisted tape and micro-fin tube arrangements. J Hydrodyn. 2013;25:205–14.CrossRefGoogle Scholar
  16. 16.
    MageshBabu D, Nagarajan PK, Sathyamurthy R, Krishnan SSJ. Enhancing the thermal performance of AL2O3/DI water nanofluids in micro-fin tube equipped with straight and left-right twisted tapes in turbulent flow regime. Exp Heat Transf. 2017;30:267–83.CrossRefGoogle Scholar
  17. 17.
    Eiamsa-Ard S, Wongcharee K. Single-phase heat transfer of CuO/water nanofluids in micro-fin tube equipped with dual twisted-tapes. Int Commun Heat Mass Transf. 2012;39:1453–9.CrossRefGoogle Scholar
  18. 18.
    Jafaryar M, Sheikholeslami M, Zhixiong L. CuO-water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technol. 2018;336:131–43.CrossRefGoogle Scholar
  19. 19.
    Eiamsa-ard S, Wongcharee K. Convective heat transfer enhancement using Ag-water nanofluid in a micro-fin tube combined with non-uniform twisted tape. Int J Mech Sci. 2018;146–147:337–54.CrossRefGoogle Scholar
  20. 20.
    Nakhchi ME, Esfahani JA. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94.CrossRefGoogle Scholar
  21. 21.
    Aghaie AA, Darzi AR. Heat transfer-asian research, heat transfer and pressure drop of Al2O3/water nanofluid in a tube equipped with double twisted tape inserts with different pitch ratios. Heat Transf Asian Res. 2019;48:233–53.CrossRefGoogle Scholar
  22. 22.
    Al Kumait AAR, Ibrahim TK, Abdullah MA. Heat Transfer-Asian Research, Experimental and numerical study of forced convection heat transfer in different internally ribbed tubes configuration using TiO2 nanofluid. Heat Transf Asian Res. 2019.  https://doi.org/10.1002/htj.21457.CrossRefGoogle Scholar
  23. 23.
    Ali Farshad S, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.CrossRefGoogle Scholar
  24. 24.
    Karimi A, Al-Rashed AAAA, Afrand M, Mahian O, Wongwises S, Shahsavari A. The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model. Int J Mech Sci. 2019;156:397–409.CrossRefGoogle Scholar
  25. 25.
    Moghaddaszadeh N, Abolfazli Esfahani J, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019;137:865–77.CrossRefGoogle Scholar
  26. 26.
    Arash Rezaei Gorjaei. Azadeh Shahidian, Heat transfer enhancement in a curved tube by using twisted tape insert and turbulent nanofluid flow. J Therm Anal Calorim. 2019;137:1059–68.CrossRefGoogle Scholar
  27. 27.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.CrossRefGoogle Scholar
  28. 28.
    Krishnan SSJ, Nagarajan PK. Convective performance and particle effect analysis on aqua-antifreeze based oxomagnesium nanofluids while flowing through a micro-fin tube with twisted tapes. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08336-z.CrossRefGoogle Scholar
  29. 29.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.CrossRefGoogle Scholar
  30. 30.
    Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.CrossRefGoogle Scholar
  31. 31.
    Chandrasekar M, Suresh S, Chandra BA. Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts. Exp Therm Fluid Sci. 2010;34:122–30.CrossRefGoogle Scholar
  32. 32.
    Maxwell JC. Treatise on electricity and magnetism. New York: Dover; 1954.Google Scholar
  33. 33.
    Einstein A. Berichtigung zu meiner Arbeit: eine neue Bestimmung der Molekul- dimensionen. Ann Phys. 1911;34:591.CrossRefGoogle Scholar
  34. 34.
    ANSI/ASME, Measurement Uncertainty, PTC 19, 1-1985. Part I, 1986.Google Scholar
  35. 35.
    Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng. 1953;75:3–8.Google Scholar
  36. 36.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part i: fundamentals and theory. Phys Rep. 2019;790:1–48.CrossRefGoogle Scholar
  37. 37.
    Naik MT, Fahad SS, Sundar LS, Singh MK. Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid. Exp Thermal Fluid Sci. 2014;57:65–76.CrossRefGoogle Scholar
  38. 38.
    Qi C, Liu M, Luo T, Pan Y, Rao Z. Effects of twisted tape structures on thermo-hydraulic performances of nanofluids in a triangular tube. Int J Heat Mass Transf. 2018;127:14–159.CrossRefGoogle Scholar
  39. 39.
    Eiamsa-ard S, Wongcharee K. Experimental study of TiO2-water nanofluid flow in corrugated tubes mounted with semi-circular wing tapes. Heat Transf Eng. 2018;39:1–14.CrossRefGoogle Scholar
  40. 40.
    Dalkılıç AS, Türk OA, Mercan H, Nakkaew S, Wongwises S. An experimental investigation on heat transfer characteristics of graphite-SiO2/water hybrid nanofluid flow in horizontal tube with various quad channel twisted tape inserts. Int Commun Heat Mass Transf. 2019;107:1–13.CrossRefGoogle Scholar
  41. 41.
    Eiamsa-ard S, Wongcharee K, Kunnarak K, Kumar M, Chuwattabakul V. Heat transfer enhancement of TiO2-water nanofluid flow in dimpled tube with twisted tape insert. Heat Mass Transf. 2019;55:2987–3001.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • P. Samruaisin
    • 1
  • K. Wongcharee
    • 2
  • V. Chuwattanakul
    • 3
    Email author
  • S. Eiamsa-ard
    • 1
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringMahanakorn University of TechnologyBangkokThailand
  2. 2.Department of Chemical Engineering, Faculty of EngineeringMahanakorn University of TechnologyBangkokThailand
  3. 3.Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations