Nucleus density and crystallization behavior of isotactic polypropylene nucleated with different α/β compound nucleating agents

  • Jing-Jing Mao
  • You-Zhou Jiang
  • Pei-Zhang Zhou
  • Yan LiEmail author
  • Yue-Fei ZhangEmail author


Different compound nucleating agents consisting of a highly efficient novel α-nucleating agent N,N’-bis(benzoyl) sebacic acid dihydrazide and three typical β-nucleating agents N,N-dicyclohexylterephthalamide, rare earth compound (WBG-II) and calcium pimelate were incorporated into isotactic polypropylene (iPP), and the isothermal crystallization behavior of iPP nucleated with these compound nucleating agents was investigated by differential scanning calorimetry. Based on the classical Avrami theory and the calorimetric curves under isothermal conditions, the crystallization half-time and the Avrami index can be calculated. The results demonstrate that addition of these nucleating agents reduced the crystallization half-time and speed up the crystallization process of iPP. In addition, the nucleus density of pure and nucleated iPP was further calculated from the Lamberti model and the results illustrate that the nucleus density of iPP after addition of different compound nucleating agents was increased greatly and it was several orders of magnitude higher than that of pure iPP.


Compound nucleating agent Isotactic polypropylene Isothermal crystallization Nucleus density 



This work was financially supported by Hunan Provincial Natural Science Foundation of China (No. 2019JJ40294).


  1. 1.
    Zhang YF, Zhou PZ, Guo LH, Hou HH. The relationship between crystal structure and nucleation effect of 1,3,5-benzenetricarboxylic acid tris(phenylamide) in isotactic polypropylene. Colloid Polym Sci. 2017;295:619–26.CrossRefGoogle Scholar
  2. 2.
    Zhao SC, Yu X, Gong HZ, Shi YQ, Zhou S. The crystallization behavior of isotactic polypropylene induced by a novel anti-nucleating agent and its inhibition mechanism of nucleation. Ind Eng Chem Res. 2015;54:7650–7.CrossRefGoogle Scholar
  3. 3.
    Kristiansen M, Werner M, Tervoort T, Smith P, Blomenhofer M, Schmidt HW. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene) sorbitol: phase behavior, nucleation, and optical properties. Macromolecules. 2003;36:5150–6.CrossRefGoogle Scholar
  4. 4.
    Zhang YF, Zhou PZ, Jiang YZ, Yang X. The relationship between side chain isomerism of aliphatic C4 substituted 1,3,5-benzenetricarboxylamides and nucleation effects in isotactic polypropylene. Thermochim Acta. 2017;655:219–25.CrossRefGoogle Scholar
  5. 5.
    Varga J. Supermolecular structure of isotactic polypropylene. J Mater Sci. 1992;27:2557–79.CrossRefGoogle Scholar
  6. 6.
    Lotz B. A new ε crystal modification found in stereodefective isotactic polypropylene samples. Macromolecules. 2014;47:7612–24.CrossRefGoogle Scholar
  7. 7.
    Li Y, Kong JJ, Xin SY, Han CY, Xiao LG. Crystallization and melting characteristics of iPP nucleated by a sustainable eggshell powder-supported β-nucleating agent. J Therm Anal Calorim. 2016;128:1093–106.CrossRefGoogle Scholar
  8. 8.
    Xu LL, Xu K, Chen DH, Zheng QK, Liu FY, Chen MC. Thermal behavior of isotactic polypropylene in different content of β-nucleating agent. J Therm Anal Calorim. 2009;96:733–40.CrossRefGoogle Scholar
  9. 9.
    Varga J, Karger Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci, Part B: Polym Phys. 1996;34:657–70.CrossRefGoogle Scholar
  10. 10.
    Chen YH, Mao YM, Li ZM, Hsiao BS. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43:6760–71.CrossRefGoogle Scholar
  11. 11.
    Lovinger A, Chua J, Gryte C. Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed. 1977;15:641–56.CrossRefGoogle Scholar
  12. 12.
    Leuuering V, Kirsc G. Beeinflussung der kristallstruktur von isotaktischem polypropylen durch Kristallisation aus orientierten schmelzen. Macromol Mater Eng. 1973;33:17–23.Google Scholar
  13. 13.
    Papageorgiou D, Chrissafis K, Bikiaris D. β-Nucleated polypropylene: processing, properties and nanocomposites. Polym Rev. 2015;55:596–629.CrossRefGoogle Scholar
  14. 14.
    Zhang YF. Crystallization and melting behaviors of isotactic polypropylene nucleated with compound nucleating agents. J Macromol Sci B. 2008;46:911–6.Google Scholar
  15. 15.
    Lotz B, Graff S, Wittmann JC. Crystal morphology of the γ (triclinic) phase of isotactic polypropylene and its relation to the α phase. J Polym Sci, Part B: Polym Phys. 1986;24:2017–32.CrossRefGoogle Scholar
  16. 16.
    Campbell RA, Phillips PJ, Lin JS. The gamma phase of high-molecular-weight polypropylene: 1. morphological aspects. Polymer. 1993;34:4809–16.CrossRefGoogle Scholar
  17. 17.
    Zhang YF, Hou HH, Guo LH. Effects of cyclic carboxylate nucleating agents on nucleus density and crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;131:1483–90.CrossRefGoogle Scholar
  18. 18.
    Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, Cheevasrirungruang W. Effects of sodium salt and sorbitol-derivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res. 2014;53:2331–9.CrossRefGoogle Scholar
  19. 19.
    Guan Z, Lin Z, Mai K. Monetaria moneta as a novel β-nucleating agent for isotactic polypropylene. Compos Sci Technol. 2013;87:58–63.CrossRefGoogle Scholar
  20. 20.
    Lv ZP, Yang YF, Wu R, Tong YC. Design and properties of a novel nucleating agent for isotactic polypropylene. Mater Des. 2012;37:73–8.CrossRefGoogle Scholar
  21. 21.
    Yoshimoto S, Ueda T, Yamanaka K, Kawaguchi A, Tobita E, Haruna T. Epitaxial act of sodium 2,2′-methylene-bis-(4,6-di-t-butylphenylene)phosphate on isotactic polypropylene. Polymer. 2001;42:9627–31.CrossRefGoogle Scholar
  22. 22.
    Blomenhofer M, Ganzleben S, Hanft D, Schmidt HW, Kristiansen M, Smith P, Stoll K, Mäder D, Hoffmann K. “Designer” nucleating agents for polypropylene. Macromolecules. 2005;38:3688–95.CrossRefGoogle Scholar
  23. 23.
    Mani MR, Chellaswamy R, Marathe YN, Pillai VK. New understanding on regulating the crystallization and morphology of the β-polymorph of isotactic polypropylene based on carboxylate-alumoxane nucleating agents. Macromolecules. 2016;49:2197–205.CrossRefGoogle Scholar
  24. 24.
    Horváth F, Gombár T, Varga J, Menyhárd A. Crystallization, melting, supermolecular structure and properties of isotactic polypropylene nucleated with dicyclohexyl-terephthalamide. J Therm Anal Calorim. 2017;128:925–35.CrossRefGoogle Scholar
  25. 25.
    Luo F, Geng CZ, Wang K, Deng H, Chen F, Fu Q, Na B. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules. 2009;42:9325–31.CrossRefGoogle Scholar
  26. 26.
    Zhang YF, Luo XX, Zhu L, Yang XJ, Chang Y. Effects of α/β compound nucleating agents on mechanical properties and crystallization behaviors of isotactic polypropylene. J Macromol Sci B. 2012;51:2352–60.CrossRefGoogle Scholar
  27. 27.
    Wei ZY, Zhang WX, Chen GY, Liang JC, Yang S, Wang P, Liu L. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.CrossRefGoogle Scholar
  28. 28.
    Zhang YF, Xin Z. Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. J Polym Sci, Part B: Polym Phys. 2007;45:590–6.CrossRefGoogle Scholar
  29. 29.
    Bai HW, Wang Y, Liu L, Zhang JH, Han L. Nonisothermal crystallization behaviors of polypropylene with α/β nucleating agents. J Polym Sci, Part B: Polym Phys. 2008;46:1853–67.CrossRefGoogle Scholar
  30. 30.
    Zhao SC, Xin Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci, Part B: Polym Phys. 2010;48:653–65.CrossRefGoogle Scholar
  31. 31.
    Zhang QY, Chen ZF, Wang B, Chen JY, Yang F, Kang J, Cao Y, Xiang M, Li HL. Effects of melt structure on crystallization bbehavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci. 2015;132(42355):1–9.Google Scholar
  32. 32.
    Cai YH, Yan SF, Yin JB, Fan YQ, Chen XS. Crystallization behavior of biodegradable poly(L-lactic acid) filled with a powerful nucleating agent: N,N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci. 2011;121:1408–16.CrossRefGoogle Scholar
  33. 33.
    Li CH, Luo SS, Wang JF, Wu H, Guo SY, Zhang X. Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromol. 2017;18:1440–8.CrossRefGoogle Scholar
  34. 34.
    Zhou PZ, Zhang YF, Lin XF. Crystallization kinetics of isotactic polypropylene nucleated with octamethylenedicarboxylic dibenzoylhydrazide under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2019;136:749–57.CrossRefGoogle Scholar
  35. 35.
    Zhang YF, Zhou PZ, Mao JJ, Liu N. Influences of octamethylenedicarboxylic dibenzoylhydrazide on crystallization, melting behaviors, and properties of isotactic polypropylene. Polym Bull. 2019;76:1685–96.CrossRefGoogle Scholar
  36. 36.
    Dou Q. Effect of metallic salts of pimelic acid and crystallization temperatures on the formation of β crystalline form in isotactic poly(propylene). J Macromol Sci B. 2007;46:1063–80.CrossRefGoogle Scholar
  37. 37.
    Dou Q. A comparison of the effects of calcium glutarate and pimelate on the formation of β crystalline form in isotactic poly(propylene). J Macromol Sci B. 2008;47:127–38.CrossRefGoogle Scholar
  38. 38.
    Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for poly(L-lactic acid): an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103:198–203.CrossRefGoogle Scholar
  39. 39.
    Wang KZ, Li XG, Wang GJ, Dai YQ, Zhang JJ, Zhang HF,Wang R, Mao CX, Li XY, Gong YL, Liu FY, Wang K. Preparation method for improving yield of fat dicarboxylic dihydrazide nucleating agent, CN Patent, CN 102976969 A.Google Scholar
  40. 40.
    Caze C, Devaux E, Crespy A, Cavrot JP. A new method to determine the Avrami exponent by d.s.c. studies of non-isothermal crystallization from the molten state. Polymer. 1997;38:497–502.CrossRefGoogle Scholar
  41. 41.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  42. 42.
    Manchado MAL, Biagiotti J, Torre L, Kenny JM. Effects of reinforcing fibers on the crystallization of polypropylene. Polym Eng Sci. 2000;40:2194–204.CrossRefGoogle Scholar
  43. 43.
    Zhang YF, Hou HH, Guo LH. Nucleus density dependency of crystallization of isotactic polypropylene nucleated with nucleating agent sodium bicyclic[2,2,1]heptane dicarboxylate. Polym Bull. 2018;75:3693–703.CrossRefGoogle Scholar
  44. 44.
    Menyhárd A, Gahleitner M, Varga J, Bernreitner K, Jääskeläinen P, Øysæd H, Pukánszky B. The influence of nucleus density on optical properties in nucleated isotactic polypropylene. Eur Polym J. 2009;45:3138–48.CrossRefGoogle Scholar
  45. 45.
    Martins JA, Cruz Pinto JJC. Evaluation of the instantaneous nucleation density in the isothermal crystallization of polymers. Polymer. 2002;43:3999–4010.CrossRefGoogle Scholar
  46. 46.
    Lamberti G. A direct way to determine iPP density nucleation from DSC isothermal measurements. Polym Bull. 2004;52:443–9.CrossRefGoogle Scholar
  47. 47.
    Lamberti G, De Santis F. Heat transfer and crystallization kinetics during fast cooling of thin polymer films. Int J Heat Mass Transf. 2006;43:1143–50.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations