Advertisement

Vortex-induced vibration of a cylinder in pulsating nanofluid flow

  • Y. AminiEmail author
  • S. Akhavan
  • E. Izadpanah
Article
  • 29 Downloads

Abstract

In this paper, vortex-induced vibration of a circular cylinder with forced convection heat transfer and entropy generation in pulsating alumina–water nanofluid flow is investigated numerically. Numerical simulation is carried out for a constant mass ratio of 2 and damping ratio of 0.01 at a fixed Reynolds number of 150. The ranges of reduced velocity, particle volume fraction and inlet velocity oscillation amplitude are 3–8, 0–5% and 0–1, respectively. It was found that the lock-in phenomenon, nanofluid concentration and inlet velocity oscillation amplitude have an effective role in increasing heat transfer and decreasing entropy generation. Two wake patterns (2S and 2P) were observed in the present simulation. For velocity oscillation amplitude of 1, the transition from 2S to 2P modes occurs in vortex shedding pattern.

Keywords

Vortex-induced vibration Nanofluid Pulsating flow Entropy generation Forced convection heat transfer 

List of symbols

Be

Bejan number

C

Heat capacity (J Kg−1 k−1)

Cl

Lift coefficient

Cd

Drag coefficient

Cp

Heat capacity at constant pressure (J Kg−1 k−1)

D

Cylinder diameter (m)

d

Nanoparticle diameter (m)

f

Frequency (Hz)

h

Heat transfer coefficient (W/m2K)

K

Thermal conductivity (W m−1 K−1)

Kb

Boltzmann constant (J k−1)

m

Mass (Kg)

Nu

Nusselt number

P

Pressure (Pa)

Pr

Prandtl number

q

Heat transfer rate (W)

Rb

Kapitza resistance (K m2 W−1)

Re

Reynolds number

S

Entropy generation rate (J Kg−1 k−1)

St

Strouhal number

T

Temperature (K)

t

Time (s)

U

Free stream velocity (m s−1)

V

Fluid velocity (m s−1)

y

Cylinder vertical displacement (m)

Y

Nondimensional cylinder vertical displacement

Greek symbols

µ

Fluid viscosity (Pa s)

ρ

Density (Kg m−3)

θ

Angular position (°)

α

Nanoparticle concentration (%)

Subscripts

bf

Base fluid

cyl

Cylinder

eff

Effective

eq

Equivalent

ff

Fluid friction

gen

Generated

ht

Heat transfer

loc

Local

n

Normalized

nf

Nanofluid

np

Nanoparticle

r

Reduced

Notes

References

  1. 1.
    Parkinson G. Mathematical models of flow-induced vibrations of bluff bodies. Flow Induc Struct Vib. 1974;1974:81–127.CrossRefGoogle Scholar
  2. 2.
    Govardhan R, Williamson C. Modes of vortex formation and frequency response of a freely vibrating cylinder. J Fluid Mech. 2000;420:85–130.CrossRefGoogle Scholar
  3. 3.
    Carini M, Pralits J, Luchini P. Feedback control of vortex shedding using a full-order optimal compensator. J Fluids Struct. 2015;53:15–25.CrossRefGoogle Scholar
  4. 4.
    Ahn HT, Kallinderis Y. Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general hybrid meshes. J Comput Phys. 2006;219(2):671–96.CrossRefGoogle Scholar
  5. 5.
    Cheng C-H, Hong J-L, Aung W. Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder. Int J Heat Mass Transf. 1997;40(8):1825–34.CrossRefGoogle Scholar
  6. 6.
    Borazjani I, Sotiropoulos F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. J Fluid Mech. 2009;621:321–64.CrossRefGoogle Scholar
  7. 7.
    Izadpanah E, Ashouri A, Liravi M, Amini Y. Effect of vortex-induced vibration of finned cylinders on heat transfer enhancement. Phys Fluids. 2019;31(7):073604.CrossRefGoogle Scholar
  8. 8.
    Sheikholeslami M. Magnetic field influence on CuO–H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int J Hydrogen Energy. 2017;42(31):19611–21.CrossRefGoogle Scholar
  9. 9.
    Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.CrossRefGoogle Scholar
  10. 10.
    Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.CrossRefGoogle Scholar
  11. 11.
    Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.CrossRefGoogle Scholar
  12. 12.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory, Physics reports, (2018).Google Scholar
  13. 13.
    Saeed M, Kim M-H. Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transf. 2018;120:671–82.CrossRefGoogle Scholar
  14. 14.
    Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016;101:190–201.CrossRefGoogle Scholar
  15. 15.
    Anbumeenakshi C, Thansekhar M. On the effectiveness of a nanofluid cooled microchannel heat sink under non-uniform heating condition. Appl Therm Eng. 2017;113:1437–43.CrossRefGoogle Scholar
  16. 16.
    Zhao Q, Xu H, Tao L. Nanofluid flow and heat transfer in a microchannel with interfacial electrokinetic effects. Int J Heat Mass Transf. 2018;124:158–67.CrossRefGoogle Scholar
  17. 17.
    Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08402-6.CrossRefGoogle Scholar
  18. 18.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S. Recent advances in modeling and simulation of nanofluid flows-part II: applications, Physics reports, (2018).Google Scholar
  19. 19.
    Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.CrossRefGoogle Scholar
  20. 20.
    Naderi B, Mohammadzadeh K. Numerical unsteady simulation of nanofluid flow over a heated angular oscillating circular cylinder. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08349-8.CrossRefGoogle Scholar
  21. 21.
    Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha A. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim 2019;137:965.  https://doi.org/10.1007/s10973-019-08012-2.CrossRefGoogle Scholar
  22. 22.
    Mousavi SB, Heyhat MM. Numerical study of heat transfer enhancement from a heated circular cylinder by using nanofluid and transverse oscillation. J Therm Anal Calorim. 2019;135(2):935–45.CrossRefGoogle Scholar
  23. 23.
    Maskeen MM, Zeeshan A, Mehmood OU, Hassan M. Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder. J Therm Anal Calorim. 1–10.Google Scholar
  24. 24.
    Rashidi S, Kashefi MH, Kim KC, Samimi-Abianeh O. Potentials of porous materials for energy management in heat exchangers—a comprehensive review. Appl Energy. 2019;243:206–32.CrossRefGoogle Scholar
  25. 25.
    Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.CrossRefGoogle Scholar
  26. 26.
    Fowler T IV, Witherden F, Girimaji S. Pulsating flow past a square cylinder at low reynolds number: analysis of vortex structures. College Park: Bulletin of the American Physical Society; 2019.Google Scholar
  27. 27.
    Srivastava A, Dhiman A. Pulsatile flow and heat transfer of shear-thinning power-law fluids over a confined semi-circular cylinder. Eur Phys J Plus. 2019;134(4):144.CrossRefGoogle Scholar
  28. 28.
    Hadad Y, Jafarpur K. Laminar forced convection heat transfer from isothermal bodies with unity aspect ratio in coaxial air flow. Heat Transf Eng. 2012;33(3):245–54.CrossRefGoogle Scholar
  29. 29.
    Hadad Y, Jafarpur K. Laminar forced convection heat transfer from isothermal cylinders with active ends and different aspect ratios in axial air flows. Heat Mass Transf. 2011;47(1):59–68.CrossRefGoogle Scholar
  30. 30.
    Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. Hoboken: Wiley; 2011.Google Scholar
  31. 31.
    Yue Y, Mohammadian SK, Zhang Y. Analysis of performances of a manifold microchannel heat sink with nanofluids. Int J Therm Sci. 2015;89:305–13.CrossRefGoogle Scholar
  32. 32.
    Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.CrossRefGoogle Scholar
  33. 33.
    A. Bejan, Convection heat transfer, John wiley & sons, 2013.Google Scholar
  34. 34.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.CrossRefGoogle Scholar
  35. 35.
    Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.CrossRefGoogle Scholar
  36. 36.
    Hamilton R, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.CrossRefGoogle Scholar
  37. 37.
    Li J. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS (2008).Google Scholar
  38. 38.
    Wang C, Tang H, Duan F, Simon C. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets. J Fluids Struct. 2016;60:160–79.CrossRefGoogle Scholar
  39. 39.
    Churchill S, Bernstein M. A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow. J Heat Transf. 1977;99(2):300–6.CrossRefGoogle Scholar
  40. 40.
    Izadpanah E, Amini Y, Ashouri A. A comprehensive investigation of vortex induced vibration effects on the heat transfer from a circular cylinder. Int J Therm Sci. 2018;125:405–18.CrossRefGoogle Scholar
  41. 41.
    Mahir N, Altaç Z. Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. Int J Heat Fluid Flow. 2008;29(5):1309–18.CrossRefGoogle Scholar
  42. 42.
    Liu C, Zheng X, Sung C. Preconditioned multigrid methods for unsteady incompressible flows. J Comput Phys. 1998;139(1):35–57.CrossRefGoogle Scholar
  43. 43.
    Williamson C. 2-D and 3-D aspects of the wake of a cylinder, and their relation to wake computations. Lect Appl Math Am Math Soc. 1991;28:719.Google Scholar
  44. 44.
    Norberg C. Fluctuating lift on a circular cylinder: review and new measurements. J Fluids Struct. 2003;17(1):57–96.CrossRefGoogle Scholar
  45. 45.
    Tritton DJ. Experiments on the flow past a circular cylinder at low Reynolds numbers. J Fluid Mech. 1959;6(4):547–67.CrossRefGoogle Scholar
  46. 46.
    Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonic response. J Offshore Mech Arct Eng. 1995;117(4):232–8.CrossRefGoogle Scholar
  47. 47.
    Andraka C, Diller T. Heat-transfer distribution around a cylinder in pulsating crossflow. J Eng Gas Turbines Power. 1985;107(4):976–82.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPersian Gulf UniversityBushehrIran
  2. 2.School of Mechanical EngineeringTehran UniversityTehranIran

Personalised recommendations