Aqueous sol–gel synthesis, thermoanalytical study and luminescent properties of M0.05Eu0.05Ca0.9MoO4 (M=Li, Na, K, Rb, Cs) nanocrystallites

  • Giedrė Gaidamavičienė
  • Gytautas Janulevičius
  • Eglė Venslauskaitė
  • Artūras ŽalgaEmail author


Nano-sized M0.05Eu0.05Ca0.9MoO4 (M=Li, Na, K, Rb, Cs) ceramics have been successfully synthesized by an aqueous sol–gel synthesis method using a tartaric acid as a ligand. In order to reveal the influence of the peculiarities of the nature of dopants effect into the crystallization of CaMoO4 double oxide, the thermal analysis of the as-prepared gels was performed. In addition, infrared spectroscopy was used in order to identify the functional groups from the characteristic stretching vibrations in the M–Eu–Ca–Mo–O tartrate gel precursors. Besides, to confirm the dynamics of growing crystallites in the final ceramics and to reveal the morphological changes on the surface, the x-ray diffraction and scanning electron microscopy were applied. Finally, photoluminescence measurements were used to estimate the optical properties of europium oxide as a dopant in the samples according to the nature of alkali metal. Therefore, according to the obtained results, it was estimated that luminescence intensity of Eu3+ ions is mainly affected by the chemical reaction, which takes place at about 973 K of temperature. This effect was partly confirmed from the results of the thermal decomposition of M–Eu–Ca–Mo–O tartrate gel precursors with an endothermic behaviour in the DSC curve, which indicates the crystallization mechanism of the CaMoO4 double oxide.


Sol–gel synthesis Thermal analysis X-ray diffraction Rietveld refinement Optical properties 



This research was funded by the European Social Fund under the No 09.3.3-LMTK-712 “Development of Competences of Scientists, other Researchers and Students through Practical Research Activities” measure.


  1. 1.
    Hou ZY, Chai RT, Zhang ML, Zhang CM, Chong P, Xu ZH, et al. Fabrication and luminescence properties of one-dimensional CaMoO4:Ln3+ (Ln=Eu, Tb, Dy) Nanofibers via Electrospinning Process. Langmuir. 2009;25(20):12340–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gao DJ, Lai X, Cui CH, Cheng P, Bi J, Lin DM. Oxidant-assisted preparation of CaMoO4 thin film using an irreversible galvanic cell method. Thin Solid Films. 2010;518(12):3151–5.CrossRefGoogle Scholar
  3. 3.
    Lei F, Yan B. Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W, Mo; RE=Eu, Tb) submicro-phosphors. J Solid State Chem. 2008;181(4):855–62.CrossRefGoogle Scholar
  4. 4.
    Thongtem T, Kungwankunakorn S, Kuntalue B, Phuruangrat A, Thongtem S. Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature. J Alloy Compd. 2010;506(1):475–81.CrossRefGoogle Scholar
  5. 5.
    Hosseinpour-Mashkani SS, Hosseinpour-Mashkani SS, Sobhani-Nasab A. Synthesis and characterization of rod-like CaMoO4 nanostructure via free surfactant sonochemical route and its photocatalytic application. J Mater Sci Mater Electron. 2016;27(5):4351–5.CrossRefGoogle Scholar
  6. 6.
    Silva MMS, Sena MS, Lopes-Moriyama AL, Souza CP, Santos AG. Experimental planning of the synthesis of strontium molybdate by EDTA-citrate and its structural influence, morphology and optical bandgap. Ceram Int. 2018;44(14):16606–14.CrossRefGoogle Scholar
  7. 7.
    Sun Y, Ma JF, Jiang XH, Fang JR, Song ZW, Gao C, et al. Ethylene glycol-assisted electrochemical synthesis of CaMoO4 crystallites with different morphology and their luminescent properties. Solid State Sci. 2010;12(7):1283–6.CrossRefGoogle Scholar
  8. 8.
    Parchur AK, Ningthoujam RS, Rai SB, Okram GS, Singh RA, Tyagi M, et al. Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans. 2011;40(29):7595–601.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang YG, Ma JF, Tao JT, Zhu XY, Zhou J, Zhao ZQ, et al. Low temperature synthesis of CaMoO4 nanoparticles. Ceram Int. 2007;33(4):693–5.CrossRefGoogle Scholar
  10. 10.
    Raju GSR, Pavitra E, Ko YH, Yu JS. A facile and efficient strategy for the preparation of stable CaMoO4 spherulites using ammonium molybdate as a molybdenum source and their excitation induced tunable luminescent properties for optical applications. J Mater Chem. 2012;22(31):15562–9.CrossRefGoogle Scholar
  11. 11.
    Li X, Yang ZP, Guan L, Guo JX, Wang Y, Guo QL. Synthesis and luminescent properties of CaMoO4:Tb3+, R + (Li + , Na + , K +). J Alloy Compd. 2009;478(1–2):684–6.CrossRefGoogle Scholar
  12. 12.
    Zhang ZJ, Chen HH, Yang XX, Zhao JT. Preparation and luminescent properties of Eu3+ and Tb3+ ions in the host of CaMoO4. Mater Sci Eng B Solid State Mater Adv Technol. 2007;145(1–3):34–40.Google Scholar
  13. 13.
    Luo YS, Dai XJ, Zhang WD, Yang Y, Sun CQ, Fu SY. Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route. Dalton Trans. 2010;39(9):2226–31.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Marques VS, Cavalcante LS, Sczancoski JC, Alcantara AFP, Orlandi MO, Moraes E, et al. Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Cryst Growth Des. 2010;10(11):4752–68.CrossRefGoogle Scholar
  15. 15.
    Parchur AK, Ningthoujam RS. Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans. 2011;40(29):7590–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dutta S, Som S, Sharma SK. Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. Dalton Trans. 2013;42(26):9654–61.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haque MM, Kim DK. Luminescent properties of Eu3+ activated MLa2(MoO4)(4) based (M=Ba, Sr and Ca) novel red-emitting phosphors. Mater Lett. 2009;63(9–10):793–6.CrossRefGoogle Scholar
  18. 18.
    Cavalli E, Boutinaud P, Mahiou R, Bettinelli M, Dorenbos P. Luminescence dynamics in Tb3+-doped CaWO4 and CaMoO4 crystals. Inorg Chem. 2010;49(11):4916–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Parchur AK, Prasad AI, Ansari AA, Rai SB, Ningthoujam RS. Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core-shell formation. Dalton Trans. 2012;41(36):11032–45.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang JH, Wang L, Jin Y, Zhang X, Hao ZD, Wang XJ. Energy transfer in Y3Al5O12:Ce3+, Pr3+ and CaMoO4:Sm3+, Eu3+ phosphors. J Lumin. 2011;131(3):429–32.CrossRefGoogle Scholar
  21. 21.
    Liu XG, Li L, Noh HM, Jeong JH, Jang K, Shin DS. Controllable synthesis of uniform CaMoO4:Eu3+, M+(M=Li, Na, K) microspheres and optimum luminescence properties. RSC Adv. 2015;5(13):9441–54.CrossRefGoogle Scholar
  22. 22.
    Laguna M, Nunez NO, Becerro AI, Ocana M. Morphology control of uniform CaMoO4 microarchitectures and development of white light emitting phosphors by Ln doping (Ln=Dy3+, Eu3+). CrystEngComm. 2017;19(12):1590–600.CrossRefGoogle Scholar
  23. 23.
    Cho K, Choi J, Kim KM, Kim TW, Lee JI, Ryu JH. Pulsed laser synthesis of Er3+/Yb3+Co-doped CaMoO4 colloidal nanocrystal and its upconversion luminescence. J Nanosci Nanotechnol. 2016;16(6):6344–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Choi GK, Kim JR, Yoon SH, Hong KS. Microwave dielectric properties of scheelite (A=Ca, Sr, Ba) and wolframite (A=Mg, Zn, Mn) AMoO(4) compounds. J Eur Ceram Soc. 2007;27(8–9):3063–7.CrossRefGoogle Scholar
  25. 25.
    Yan SX, Zhang JH, Zhang X, Lu SZ, Ren XG, Nie ZG, et al. Enhanced red emission in CaMoO4:Bi3+, Eu3+. J Phys Chem C. 2007;111(35):13256–60.CrossRefGoogle Scholar
  26. 26.
    Parhi P, Singh SS, Ray AR, Ramanan A. Mechanochemically assisted room temperature solid state metathesis reaction for the synthesis of MMoO4 (M=Ca, Sr and Ba). Bull Mat Sci. 2006;29(2):115–8.CrossRefGoogle Scholar
  27. 27.
    Yu S, Lin ZB, Zhang LZ, Wang GF. Preparation of monodispersed Eu3+:CaMoO4 nanocrystals with single quasihexagon. Cryst Growth Des. 2007;7(12):2397–9.CrossRefGoogle Scholar
  28. 28.
    Yoon JW, Ryu JH, Shim KB. Photoluminescence in nanocrystalline MMoO4 (M=Ca, Ba) synthesized by a polymerized complex method. Mater Sci Eng B Solid State Mater Adv Technol. 2006;127(2–3):154–8.CrossRefGoogle Scholar
  29. 29.
    Wangkhem R, Yaba T, Singh NS, Ningthoujam RS. Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: energy transfer studies near. J Appl Phys. 2018;123(12):10.CrossRefGoogle Scholar
  30. 30.
    Yin YK, Gao Y, Sun YZ, Zhou BB, Ma L, Wu X, et al. Synthesis and photoluminescent properties of CaMoO4 nanostructures at room temperature. Mater Lett. 2010;64(5):602–4.CrossRefGoogle Scholar
  31. 31.
    Shi S, Gao J, Zhou J. Effects of charge compensation on the luminescence behavior of Eu3+ activated CaWO4 phosphor. Opt Mater. 2008;30(10):1616–20.CrossRefGoogle Scholar
  32. 32.
    Kim KM, Ryu JH, Mhin SW, Park GS, Shim KB. Luminescence of nanocrystalline Tb(3)Al(5)O(12): Ce(3+) phosphors synthesized by nitrate-citrate gel combustion method. J Electrochem Soc. 2008;155(10):J293–6.CrossRefGoogle Scholar
  33. 33.
    Lian JB, Qin H, Liang P, Liu F. Co-precipitation synthesis of Y2O2SO4:Eu3+ nanophosphor and comparison of photoluminescence properties with Y2O2:Eu3+ and Y2O2S:Eu3+ nanophosphors. Solid State Sci. 2015;48:147–54.CrossRefGoogle Scholar
  34. 34.
    Cho H, Hwang SM, Bin Lee J, Ka DH, Kim TW, Lee BS, et al. White luminescence of Ho3+/Tm3+/Yb3+-codoped CaWO4 synthesized via citrate complex route assisted by microwave irradiation. Trans Nonferrous Met Soc China. 2014;24:S134–40.CrossRefGoogle Scholar
  35. 35.
    Braziulis G, Janulevicius G, Stankeviciute R, Zalga A. Aqueous sol-gel synthesis and thermoanalytical study of the alkaline earth molybdate precursors. J Therm Anal Calorim. 2014;118(2):613–21.CrossRefGoogle Scholar
  36. 36.
    Braziulis G, Stankeviciute R, Zalga A. Sol–gel derived europium doped CaMoO4:Eu3+ with complex microstructural and optical properties. Mater Sci Medzg. 2014;20(1):90–6.Google Scholar
  37. 37.
    Zalga A, Gaidamaviciene GE, Gricius Z, Uzpurvyte E, Gadeikis J, Diktanaite A, et al. Aqueous sol-gel synthesis, thermoanalytical study and electrical properties of La2Mo2O9. J Therm Anal Calorim. 2018;132(3):1499–511.CrossRefGoogle Scholar
  38. 38.
    Stuart B. Infrared spectroscopy: fundamentals and applications. West Sussex: Wiley; 2004.CrossRefGoogle Scholar
  39. 39.
    Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy. 2006.Google Scholar
  40. 40.
    Braziulis G, Stankeviciute R, Zalga A. Sol-gel derived europium doped CaMoO4:Eu3+ with complex microstructural and optical properties. Mater Sci. 2014;20(1):90–6.Google Scholar
  41. 41.
    Curtis C, Tharp A. Ceramic properties of europium oxide. J Am Ceram Soc. 1959;42(3):151–6.CrossRefGoogle Scholar
  42. 42.
    Liu J, Lian HZ, Shi CS. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+. Opt Mater. 2007;29(12):1591–4.CrossRefGoogle Scholar
  43. 43.
    Binnemans K. Interpretation of europium(III) spectra. Coord Chem Rev. 2015;295:1–45.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Applied Chemistry, Institute of Chemistry, Faculty of Chemistry and GeosciencesVilnius UniversityVilniusLithuania

Personalised recommendations