Advertisement

Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling

  • Tauseef-ur- Rehman
  • Hafiz Muhammad AliEmail author
Article
  • 14 Downloads

Abstract

Present experimental investigation focuses on the performance analysis of metallic foam and phase change material (PCM)-based heat sink at variable heat loads. High porosity (97%) copper and nickel foams are used with PCM (RT-54HC) to enhance the surface area for the heat transfer. Experimental results reveal that metallic foam-based heat sink embedded with PCM can reduce the base temperature of the heat sink efficiently. Copper foam is recognized to be more promising when compared to nickel foam in lowering base temperature for all heat loads (8 W, 16 W and 24 W). It was found that copper foam embedded with 0.8 volume fraction of PCM reduced the base temperature by 26% as compared to that of nickel foam without PCM at 24 W. Furthermore, when the PCM fraction is increased, final temperature of the heat sink gets lessened at the end of charging process while discharging process remains almost intact. So, in this study, copper foam with 0.8 volume fraction is determined to be an optimized configuration.

Keywords

Thermal management Metal foam Phase change material Heat sink Electronic cooling Energy storage 

List of symbols

I

Current

L

Length of heating surface

\(m_{\text{PCM}}\)

Mass of PCM

q

Heat flux

V

Voltage

\(V_{\text{S}}\)

Volume of heat sink

W

Width of heating surface

Abbreviations

PCM

Phase change material

PPI

Pores per inch

SEM

Scanning electron microscope

Greek symbols

ε

Porosity

\(\psi_{\text{PCM}}\)

Volume fraction of PCM

Notes

References

  1. 1.
    Queipo N, Devarakonda R, Humphrey JAC. Genetic algorithms for thermosciences research: application to the optimized cooling of electronic components. Int J Heat Mass Transf. 1994;37(6):893–908.CrossRefGoogle Scholar
  2. 2.
    Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transfer. 2018;127:381–93.CrossRefGoogle Scholar
  3. 3.
    Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manag. 2019;179:314–25.CrossRefGoogle Scholar
  4. 4.
    Mustaffar A, Reay D, Harvey A. The melting of salt hydrate phase change material in an irregular metal foam for the application of traction transient cooling. Therm Sci Eng Prog. 2018;5:454–65.CrossRefGoogle Scholar
  5. 5.
    Hu X, Wan H, Patnaik SS. Numerical modeling of heat transfer in open-cell micro-foam with phase change material. Int J Heat Mass Transf. 2015;88:617–26.CrossRefGoogle Scholar
  6. 6.
    Gopalan KS, Eswaran V. Numerical investigation of thermal performance of PCM based heat sink using structured porous media as thermal conductivity enhancers. Int J Therm Sci. 2016;104:266–80.CrossRefGoogle Scholar
  7. 7.
    Tomizawa Y, Sasaki K, Kuroda A, Takeda R, Kaito Y. Experimental and numerical study on phase change material (PCM) for thermal management of mobile devices. Appl Therm Eng. 2016;98:320–9.CrossRefGoogle Scholar
  8. 8.
    Shang B, Jinyan H, Run H, Cheng J, Luo X. Modularized thermal storage unit of metal foam/paraffin composite. Int J Heat Mass Transf. 2018;125:596–603.CrossRefGoogle Scholar
  9. 9.
    Zhu Z-Q, Huang Y-K, Nan H, Zeng Y, Fan L-W. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio. Appl Therm Eng. 2018;128:966–72.CrossRefGoogle Scholar
  10. 10.
    Zhang P, Meng ZN, Zhu H, Wang YL, Peng SP. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Appl Energy. 2017;185:1971–83.CrossRefGoogle Scholar
  11. 11.
    Deng Z, Liu X, Zhang C, Huang Y, Chen Y. Melting behaviors of PCM in porous metal foam characterized by fractal geometry. Int J Heat Mass Transf. 2017;113:1031–42.CrossRefGoogle Scholar
  12. 12.
    Mahdi JM, Nsofor EC. Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Energy. 2017;126:501–12.CrossRefGoogle Scholar
  13. 13.
    Wang H, Wang F, Li Z, Tang Y, Binhai Yu, Yuan W. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material. Appl Energy. 2016;176:221–32.CrossRefGoogle Scholar
  14. 14.
    Feng S, Li F, Zhang F, Lu TJ. Natural convection in metal foam heat sinks with open slots. Exp Therm Fluid Sci. 2018;91:354–62.CrossRefGoogle Scholar
  15. 15.
    Beer M, Rybár R, Kaľavský M. Experimental heat transfer analysis of open cell hollow ligament metal foam at low Reynolds number. Measurement. 2019;133:214–21.CrossRefGoogle Scholar
  16. 16.
    Kotresha B, Gnanasekaran N. Analysis of forced convection heat transfer through graded ppi metal foams. Numer Heat Transf Fluid Flow. 2019;2019:151–8.CrossRefGoogle Scholar
  17. 17.
    Al-Jethelah M, Ebadi S, Venkateshwar K, Tasnim SH, Mahmud S, Dutta A. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: an experimental investigation. Appl Therm Eng. 2019;148:1029–42.CrossRefGoogle Scholar
  18. 18.
    Martinelli M, Bentivoglio F, Caron-Soupart A, Couturier R, Fourmigue J-F, Marty P. Experimental study of a phase change thermal energy storage with copper foam. Appl Therm Eng. 2016;101:247–61.CrossRefGoogle Scholar
  19. 19.
    Dinesh BVS, Bhattacharya A. Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems. Int J Heat Mass Transf. 2019;134:866–83.CrossRefGoogle Scholar
  20. 20.
    Zhu F, Zhang C, Gong X. Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite. Appl Therm Eng. 2016;109:373–83.CrossRefGoogle Scholar
  21. 21.
    Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. Int J Heat Mass Transf. 2016;102:1159–68.CrossRefGoogle Scholar
  22. 22.
    Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy. 2015;148:403–9.CrossRefGoogle Scholar
  23. 23.
    Fathabadi H. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy. 2014;70:529–38.CrossRefGoogle Scholar
  24. 24.
    Xie Y, Tang J, Shi S, Xing Y, Hongwei W, Zhongliang H, Wen D. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials. Energy Convers Manag. 2017;154:562–75.CrossRefGoogle Scholar
  25. 25.
    Zou D, Ma X, Liu X, Zheng P, Yunping H. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int J Heat Mass Transf. 2018;120:33–41.CrossRefGoogle Scholar
  26. 26.
    Samimi F, Babapoor A, Azizi M, Karimi G. Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers. Energy. 2016;96:355–71.CrossRefGoogle Scholar
  27. 27.
    Malik M, Dincer I, Rosen MA. Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. Int J Energy Res. 2016;40(8):1011–31.CrossRefGoogle Scholar
  28. 28.
    Greco A, Jiang X. A coupled thermal and electrochemical study of lithium-ion battery cooled by paraffin/porous-graphite-matrix composite. J Power Sources. 2016;315:127–39.CrossRefGoogle Scholar
  29. 29.
    Al-Zareer M, Dincer I, Rosen MA. A novel phase change based cooling system for prismatic lithium ion batteries. Int J Refrig. 2018;86:203–17.CrossRefGoogle Scholar
  30. 30.
    Al-Zareer M, Dincer I, Rosen MA. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. J Power Sources. 2017;363:291–303.CrossRefGoogle Scholar
  31. 31.
    Zhao R, Junjie G, Liu J. Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design. Energy. 2017;135:811–22.CrossRefGoogle Scholar
  32. 32.
    Lazrak A, Fourmigué J-F, Robin J-F. An innovative practical battery thermal management system based on phase change materials: numerical and experimental investigations. Appl Therm Eng. 2018;128:20–32.CrossRefGoogle Scholar
  33. 33.
    Malik M, Dincer I, Rosen M, Fowler M. Experimental investigation of a new passive thermal management system for a Li-ion battery pack using phase change composite material. Electrochim Acta. 2017;257:345–55.CrossRefGoogle Scholar
  34. 34.
    Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources. 2017;340:51–9.CrossRefGoogle Scholar
  35. 35.
    Rehman T-u, Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transfer. 2018;98:155–62.CrossRefGoogle Scholar
  36. 36.
    Rehman T, Ali HM, Janjua MM, Sajjad U, Yan W-M. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transfer. 2019;135:649–73.CrossRefGoogle Scholar
  37. 37.
    Adeel A, et al. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112(2017):143–55.Google Scholar
  38. 38.
    Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17.CrossRefGoogle Scholar
  39. 39.
    Tian Y, Zhao CY. A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy. 2011;36(9):5539–46.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations