Advertisement

Mechanochemical synthesis, characterization and thermal study of new cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid

  • Amanda Cosmo de Almeida
  • Patrícia Osório Ferreira
  • Carolina Torquetti
  • Bruno Ekawa
  • Ana Carina Sobral Carvalho
  • Everton Carvalho dos Santos
  • Flávio Junior CairesEmail author
Article

Abstract

Novel cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid in the 1:1 stoichiometric ratio were obtained by the mechanochemical method, under conditions of liquid-assisted grinding (LAG/ethanol) and neat grinding. They were characterized by powder X-ray diffractometry, infrared spectroscopy, simultaneous thermogravimetry, differential thermal analysis, differential scanning calorimetry (DSC) and DSC-Microscopy system. The results confirmed the successful synthesis of the cocrystals and indicated the functional groups responsible for the formation of the new supramolecular synthons. In addition, from the thermal analysis, it was possible to evaluate the thermal stability, composition, crystallization processes during heating, polymorphic transitions and construct the binary phase diagrams.

Keywords

Cocrystal Ciprofloxacin Mechanochemical synthesis Thermal analysis 

Notes

Acknowledgements

The authors thank CPID/CDMF, FAPESP (grant Nos. 2013/09022-7, 2017/14936-9, 2018/12463-9 and 2018/24378-6), CNPq (grant No. 141829/2017-6) and CAPES (grant No. 001) foundations (Brazil) for financial support.

Supplementary material

10973_2019_8958_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3508 kb)

Supplementary material 2 (MP4 165945 kb)

References

  1. 1.
    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420:1–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Sathisaran I, Dalvi S. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10:108–82.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017;117:86–110.PubMedCrossRefGoogle Scholar
  4. 4.
    Aakeröy CB, Grommet AB, Desper J. Co-crystal screening of diclofenac. Pharmaceutics. 2011;3:601–14.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lin HL, Zhang GC, Hsu PC, Lin SY. A portable fiber-optic Raman analyzer for fast real-time screening and identifying cocrystal formation of drug-coformer via grinding process. Microchem J. 2013;110:15–20.CrossRefGoogle Scholar
  6. 6.
    Rajput L, Sanphui P, Desiraju GR. New solid forms of the anti-HIV drug etravirine: salts, cocrystals, and solubility. Cryst Growth Des. 2013;13:3681–90.CrossRefGoogle Scholar
  7. 7.
    Jie Lu. Crystallization and transformation of pharmaceutical solid forms. Afr J Pharm Pharmacol. 2012;6:581–91.Google Scholar
  8. 8.
    Shevchenko A, Bimbo LM, Miroshnyk I, Haarala J, Jelínková K, Syrjänen K, et al. A new cocrystal and salts of itraconazole: comparison of solid-state properties, stability and dissolution behavior. Int J Pharm. 2012;436:403–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Rocha ABO, Kuminek G, Machado TC, Rosa J, Rauber GS, Borba PA, et al. Cocristais: uma estratégia promissora na área farmacêutica. Quim Nova. 2016;39:1112–25.Google Scholar
  10. 10.
    Brittain HG. Cocrystal Systems of pharmaceutical interest: 2010. Cryst Growth Des. 2012;12:1046–54.CrossRefGoogle Scholar
  11. 11.
    Braga D, Maini L, Grepioni F. Mechanochemical preparation of co-crystals. Chem Soc Rev. 2013;42:7638–48.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kotbantao G, Charoenchaitrakool M. Processing of ketoconazole–4-aminobenzoic acid cocrystals using dense CO2 as an antisolvent. J CO2 Util. 2017;17:213–9.CrossRefGoogle Scholar
  13. 13.
    Osonwa UE, Ugochukwu JI, Ajaegbu EE, Chukwu KI, Azevedo RB, Esimone CO. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate. Bull Fac Pharm Cairo Univ. 2017;55:233–7.CrossRefGoogle Scholar
  14. 14.
    Cazedey ECL, Salgado HRN. Spectrophotometric determination of ciprofloxacin hydrochloride in ophthalmic solution. Adv Anal Chem. 2012;2:74–9.Google Scholar
  15. 15.
    Mesallati H, Mugheirbi NA, Tajber L. Two faces of ciprofloxacin: investigation of proton transfer in solid state transformations. Cryst Growth Des. 2016;16:6574–85.CrossRefGoogle Scholar
  16. 16.
    Yi K, Wang D, Qi Y, Li X, Chen H, Sun J, et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Sci Total Environ. 2017;605–606:368–75.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Surov AO, Manin AN, Voronin AP, Drozd KV, Simagina AA, Churakov AV, et al. Pharmaceutical salts of ciprofloxacin with dicarboxylic acids. Eur J Pharm Sci. 2015;77:112–21.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Reddy JS, Ganesh SV, Nagalapalli R, Dandela R, Solomon KA, Kumar KA, et al. Fluoroquinolone salts with carboxylic acids. J Pharm Sci. 2011;100:3160–76.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Almeida AC, Torquetti C, Ferreira PO, Fernandes RP, Santos EC, Kogawa AC, Caires FJ. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochim. Acta. 2019.  https://doi.org/10.1016/j.tca.2019.178346.CrossRefGoogle Scholar
  20. 20.
    Pinto Vitorino G, Sperandeo NR, Caira MR, Mazzieri MR. A supramolecular assembly formed by heteroassociation of ciprofloxacin and norfloxacin in the solid state: co-crystal synthesis and characterization. Cryst Growth Des. 2013;13:1050–8.CrossRefGoogle Scholar
  21. 21.
    Martínez-Alejo JM, Domínguez-Chávez JG, Rivera-Islas J, Herrera-Ruiz D, Höpfl H, Morales-Rojas H, et al. A twist in cocrystals of salts: changes in packing and chloride coordination lead to opposite trends in the biopharmaceutical performance of fluoroquinolone hydrochloride cocrystals. Cryst Growth Des. 2014;14:3078–95.CrossRefGoogle Scholar
  22. 22.
    Zhang Y-X, Wang L-Y, Dai J-K, Liu F, Li Y-T, Wu Z-Y, et al. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of acetazolamide. J Mol Struct. 2019;1184:225–32.CrossRefGoogle Scholar
  23. 23.
    Arenas-García JI, Herrera-Ruiz D, Morales-Rojas H, Höpfl H. Interrelation of the dissolution behavior and solid-state features of acetazolamide cocrystals. Eur J Pharm Sci. 2017;96:299–308.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–25.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chen J, Sarma B, Evans JMB, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des. 2011;11:887–95.CrossRefGoogle Scholar
  27. 27.
    Kirillov AM, Shul’pin GB. Pyrazinecarboxylic acid and analogs: highly efficient co-catalysts in the metal–complex-catalyzed oxidation of organic compounds. Coord Chem Rev. 2013;257:732–54.CrossRefGoogle Scholar
  28. 28.
    Miniyar PB, Mokale SN, Makhija SJ. Design and synthesis of 5-methylpyrazine-2-carbohydrazide derivatives: a new anti-tubercular scaffold. Arab J Chem. 2017;10:41–6.CrossRefGoogle Scholar
  29. 29.
    Barszcz B, Masternak J, Hodorowicz M, Jabłońska-Wawrzycka A. Cadmium(II) and calcium(II) complexes with N, O-bidentate ligands derived from pyrazinecarboxylic acid. J Therm Anal Calorim. 2012;108:971–8.CrossRefGoogle Scholar
  30. 30.
    Etaiw SEH, El-bendary MM. Crystal structure, characterization and catalytic activities of Cu(II) coordination complexes with 8-hydroxyquinoline and pyrazine-2-carboxylic acid. Appl Organomet Chem. 2017;e4213:1–14.Google Scholar
  31. 31.
    Drozd KV, Arkhipov SG, Boldyreva EV, Perlovich GL. Crystal structure of a 1:1 salt of 4-aminobenzoic acid (Vitamin B 10) with pyrazinoic acid. Acta Crystallogr Sect E Crystallogr Commun. 2018;74:1923–7.CrossRefGoogle Scholar
  32. 32.
    Prasad KD, Cherukuvada S, Ganduri R, Stephen LD, Perumalla S, Guru Row TN. Differential cocrystallization behavior of isomeric pyridine carboxamides toward antitubercular drug pyrazinoic acid. Cryst Growth Des. 2015;15:858–66.CrossRefGoogle Scholar
  33. 33.
    Teixeira JA, Nunes WDG, Colman TAD, do Nascimento ALC, Caires FJ, Campos FX, et al. Thermal and spectroscopic study to investigate p-aminobenzoic acid, sodium p-aminobenzoate and its compounds with some lighter trivalent lanthanides. Thermochim Acta. 2016;624:59–68.CrossRefGoogle Scholar
  34. 34.
    Akberova SI. New biological properties of p-aminobenzoic acid. Biol Bull. 2002;29:390–3.CrossRefGoogle Scholar
  35. 35.
    Li Y, Tang L-P, Zhou W, Wang X-R. Fabrication of intercalated p-aminobenzoic acid into Zn–Ti layered double hydroxide and its application as UV absorbent. Chin Chem Lett. 2016;27:1495–9.CrossRefGoogle Scholar
  36. 36.
    Patel HM, Bhardwaj V, Sharma P, Noolvi MN, Lohan S, Bansal S, et al. Quinoxaline-PABA bipartite hybrid derivatization approach: design and search for antimicrobial agents. J Mol Struct. 2019;1184:562–8.CrossRefGoogle Scholar
  37. 37.
    Li Z, Matzger AJ. Influence of coformer stoichiometric ratio on pharmaceutical cocrystal dissolution: three cocrystals of carbamazepine/4-aminobenzoic acid. Mol Pharm. 2016;13:990–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cherukuvada S, Babu NJ, Nangia A. Nitrofurantoin–p-aminobenzoic acid cocrystal: hydration stability and dissolution rate studies. J Pharm Sci. 2011;100:3233–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Friščić T, Childs SL, Rizvi SAA, Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009;11:418–26.CrossRefGoogle Scholar
  40. 40.
    Cortesão AM, Henriques JG, Castro RAE, Maria TMR, Canotilho J, Eusébio MES. Binary phase diagrams of pyridinecarboxamide isomers. J Therm Anal Calorim. 2017;130:1727–33.CrossRefGoogle Scholar
  41. 41.
    Descamps M, Willart JF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev. 2016;100:51–66.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hasa D, Miniussi E, Jones W. Mechanochemical synthesis of multicomponent crystals: one liquid for one polymorph? A myth to dispel. Cryst Growth Des. 2016;16:4582–8.CrossRefGoogle Scholar
  43. 43.
    Cinčić D, Brekalo I, Kaitner B. Solvent-free polymorphism control in a covalent mechanochemical reaction. Cryst Growth Des. 2012;12:44–8.CrossRefGoogle Scholar
  44. 44.
    Choi JM, Park K, Lee B, Jeong D, Dindulkar SD, Choi Y, et al. Solubility and bioavailability enhancement of ciprofloxacin by induced oval-shaped mono-6-deoxy-6-aminoethylamino-β-cyclodextrin. Carbohydr Polym. 2017;163:118–28.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wixtrom A, Buhler J, Abdel-Fattah T. Mechanochemical synthesis of two polymorphs of the tetrathiafulvalene–chloranil charge transfer salt: an experiment for organic chemistry. J Chem Educ. 2014;91:1232–5.CrossRefGoogle Scholar
  46. 46.
    Fischer F, Heidrich A, Greiser S, Benemann S, Rademann K, Emmerling F. Polymorphism of mechanochemically synthesized cocrystals: a case study. Cryst Growth Des. 2016;16:1701–7.CrossRefGoogle Scholar
  47. 47.
    Kendall DN. Identification of polymorphic forms of crystals by infrared spectroscopy. Anal Chem. 1953;25:382–9.CrossRefGoogle Scholar
  48. 48.
    Giron D. Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques. J Therm Anal Calorim. 2001;64:37–60.CrossRefGoogle Scholar
  49. 49.
    Lin H-L, Huang Y-T, Lin S-Y. Spectroscopic and thermal approaches to investigate the formation mechanism of piroxicam–saccharin co-crystal induced by liquid-assisted grinding or thermal stress. J Therm Anal Calorim. 2016;123:2345–56.CrossRefGoogle Scholar
  50. 50.
    Tantishaiyakul V, Dokmaisrijan S, Sangfai T, Hirun N, Li L, Juntarapet S, et al. Investigation of the efficiency of gelation of melamine with the positional isomers of aminobenzoic acid. Colloids Surf A Physicochem Eng Asp. 2014;446:118–26.CrossRefGoogle Scholar
  51. 51.
    Cherukuvada S, Guru Row TN. Comprehending the formation of eutectics and cocrystals in terms of design and their structural interrelationships. Cryst Growth Des. 2014;14:4187–98.CrossRefGoogle Scholar
  52. 52.
    Li H-R, Shu Y-J, Song C, Chen L, Xu R-J, Ju X-H. The smart precursors of energetic–energetic cocrystals from eutectic precursors. Chin Chem Lett. 2014;25:783–6.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Amanda Cosmo de Almeida
    • 1
  • Patrícia Osório Ferreira
    • 1
  • Carolina Torquetti
    • 2
  • Bruno Ekawa
    • 1
  • Ana Carina Sobral Carvalho
    • 1
  • Everton Carvalho dos Santos
    • 2
  • Flávio Junior Caires
    • 1
    • 2
    Email author
  1. 1.Institute of ChemistrySão Paulo State University (UNESP)AraraquaraBrazil
  2. 2.School of SciencesSão Paulo State University (UNESP)BauruBrazil

Personalised recommendations