Advertisement

Calorimetric measurements of sodium chloride dihydrate (hydrohalite)

  • V. A. DrebushchakEmail author
  • A. G. Ogienko
Article
  • 15 Downloads

Abstract

Calorimetric measurements of sodium chloride dihydrate NaCl·2H2O (mineral name hydrohalite) were carried out with using DSC. Heat capacity from 190 to 250 K was measured and found to increase from 109 to 137 J mol−1 K−1. The enthalpy of formation of hydrohalite from solid ice and halite at 273.15 K was derived from the thermal effect of melting/decomposition in DSC measurements and found to be close to − 1.8 kJ mol−1. The same DSC results show clearly that the upper temperature limit for the existence of hydrohalite is several degrees greater than the current value of 273.15 K accepted for the peritectic decomposition of hydrohalite. The phase diagram of the NaCl–H2O system needs correction.

Keywords

DSC Enthalpy of formation Heat capacity Hydrohalite 

Notes

Acknowledgements

VAD acknowledges that his work was supported by state assignment Project No. 0330-2019-0004.

References

  1. 1.
    Carns RC, Light B, Warren SG. The spectral albedo of sea ice and salt crusts on the tropical ocean of Snowball Earth: II. Optical modeling. J Geophys Res Oceans. 2016;121:5217–30.  https://doi.org/10.1002/2016JC011804.CrossRefGoogle Scholar
  2. 2.
    Shields AL, Carns RC. Hydrohalite salt-albedo feedback could cool M-dwarf planets. Astrophys J. 2018;867:11.  https://doi.org/10.3847/1538-4357/aadcaa.CrossRefGoogle Scholar
  3. 3.
    Valenti P, Bodnar RJ, Schmidt C. Experimental determination of H2O–NaCl liquidi to 25 mass% NaCl and 1.4 GPa: application to the Jovian satellite Europa. Geochim Cosmochim Acta. 2012;92:117–28.  https://doi.org/10.1016/j.gca.2012.06.007.CrossRefGoogle Scholar
  4. 4.
    Flahaut J, Martinot M, Bishop JL, Davies GR, Potts NJ. Remote sensing and in situ mineralogic survey of the Chilean salars: an analog to Mars evaporate deposits? Icarus. 2017;282:152–73.  https://doi.org/10.1016/j.icarus.2016.09.041.CrossRefGoogle Scholar
  5. 5.
    Ward MK, Pollard WH. A hydrohalite spring deposit in the Canadian high Arctic: a potential Mars analogue. Earth Planet Sci Lett. 2018;504:126–38.  https://doi.org/10.1016/j.epsl.2018.10.001.CrossRefGoogle Scholar
  6. 6.
    Fateev EG. Anomalously low elastic stability of NaCl–H2O ice at low temperatures. Tech Phys. 2010;55:958–64.  https://doi.org/10.1134/S1063784210070078.CrossRefGoogle Scholar
  7. 7.
    Butler BM, Papadimitriou S, Day SJ, Kennedy H. Gypsum and hydrohalite dynamics in sea ice brines. Geochim Cosmochim Acta. 2017;213:17–34.  https://doi.org/10.1016/j.gca.2017.06.020.CrossRefGoogle Scholar
  8. 8.
    Steele-MacInnis M, Bodnar RJ. Effect of the vapor phase on the salinity of halite-bearing aqueous fluid inclusions estimated from the halite dissolution temperature. Geochim Cosmochim Acta. 2013;115:205–16.  https://doi.org/10.1016/j.gca.2013.04.009.CrossRefGoogle Scholar
  9. 9.
    Davila AF, Duport LG, Melchiorri R, Jänchen J, Valea S, de los Rios A, Fairén AG, Möhlmann D, McKay CP, Ascaso C, Wierzchos J. Hygroscopic salts and the potential for life on Mars. Astrobiology. 2010;10:617–28.  https://doi.org/10.1089/ast.2009.0421.CrossRefPubMedGoogle Scholar
  10. 10.
    Archer DG. Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl (aq), NaCl·2H2O (cr), and phase equilibria. J Phys Chem Ref Data. 1992;21:793–829.  https://doi.org/10.1063/1.555915.CrossRefGoogle Scholar
  11. 11.
    Drebushchak VA, Drebushchak TN, Ogienko AG, Yunoshev AS. Crystallization of sodium chloride dihydrate (hydrohalite). J Cryst Growth. 2019;517:17–23.  https://doi.org/10.1016/j.jcrysgro.2019.04.009.CrossRefGoogle Scholar
  12. 12.
    Pishchur DP, Drebushchak VA. Recommendations on DSC calibration: how to escape the transformation of a random error into the systematic error. J Therm Anal Calorim. 2016;124:951–8.  https://doi.org/10.1007/s10973-015-5186-8.CrossRefGoogle Scholar
  13. 13.
    Archer DG. Enthalpy increment measurements for NaCl (cr) and KBr (cr) from 4.5 K to 350 K, thermodynamic properties of the NaCl + H2O system. 3. J Chem Eng Data. 1997;42:281–92.  https://doi.org/10.1021/je960224q.CrossRefGoogle Scholar
  14. 14.
    Feistel R, Wagner W. A new equation of state for H2O ice Ih. J Phys Chem Ref Data. 2006;35:1021–47.  https://doi.org/10.1063/1.2183324.CrossRefGoogle Scholar
  15. 15.
    Pabalan RT, Pitzer KS. Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na–K–Mg–Cl–SO4–OH–H2O. Geochim Cosmochim Acta. 1987;51:2429–43.  https://doi.org/10.1016/0016-7037(87)90295-X.CrossRefGoogle Scholar
  16. 16.
    Schlaikjer A, Thomsen K, Kontogeorgis GM. Simultaneous description of activity coefficients and solubility with eCPA. Ind Eng Chem Res. 2017;56:1074–89.  https://doi.org/10.1021/acs.iecr.6b03333.CrossRefGoogle Scholar
  17. 17.
    Young TF, Machin JS. Heat content and heat capacity of aqueous sodium chloride solutions. J Am Chem Soc. 1936;58:2254–60.  https://doi.org/10.1021/ja01302a049.CrossRefGoogle Scholar
  18. 18.
    Cohen-Adad R, Vallée P, Lorimer JW. Sodium chloride. In: Cohen-Adad R, Lorimer JW, editors. Alkali metal and ammonium chlorides in water and heavy water (binary systems), vol. 47., Solubility data seriesOxford: Pergamon Press; 1991. p. 64–209.CrossRefGoogle Scholar
  19. 19.
    Mal’tseva NN, Khain VS. Borogidrid natriya (sodium borohydride). Moscow: Nauka; 1985.Google Scholar
  20. 20.
    Arkhangelskii IV, Tarasov VP, Kravchenko OV, Kirakosyan G, Tsvetkov MV, Solovev MV, Dobrovolskii YA, Shihovzev AV. Thermoanalytical and NMR investigation of NaBH4·2H2O thermolysis process. J Therm Anal Calorim. 2018;132:155–63.  https://doi.org/10.1007/s10973-017-6821-3.CrossRefGoogle Scholar
  21. 21.
    Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energy Rev. 2009;13:318–45.  https://doi.org/10.1016/j.rser.2007.10.005.CrossRefGoogle Scholar
  22. 22.
    Zeng JL, Shu L, Jiang LM, Chen YH, Zhang YX, Xie T, Sun LX, Cao Z. Thermodynamic and thermal energy storage properties of a new medium-temperature phase change material. J Therm Anal Calorim. 2019;135:3171–9.  https://doi.org/10.1007/s10973-018-7530-2.CrossRefGoogle Scholar
  23. 23.
    Guo L, Yu X, Gao D, Guo Y, Ma C, Deng T. Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage. J Therm Anal Calorim. 2019;135:3215–21.  https://doi.org/10.1007/s10973-018-7610-3.CrossRefGoogle Scholar
  24. 24.
    Xu X, Zhang X, Zhou S, Wang Y, Lu L. Experimental and application study of Na2SO4·10H2O with additives for cold storage. J Therm Anal Calorim. 2019;136:505–12.  https://doi.org/10.1007/s10973-018-7633-9.CrossRefGoogle Scholar
  25. 25.
    Lowitz TE. Observations on the crystallization of common salt under cooling and the new way of purification of the salt. Nova Acta Acad Sci. 1794;8:364–9 (in Latin).Google Scholar
  26. 26.
    Lowitz TE. Selected works on chemistry and chemical technology. Moscow: Publishing House of the USSR Academy of Sciences; 1955. p. 174–8 (Russian translation).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.V.S. Sobolev Institute of Geology and Mineralogy, SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations