Advertisement

Direct synthesis of Zn(II) and Cu(II) coordination polymers based on 4,4′-bipyridine and 1,10-phenanthroline and evaluating their effects as catalyst on ammonium perchlorate thermal decomposition

  • Farshid Farhadi Abkanar
  • Abbas EslamiEmail author
  • Maciej Kubicki
Article
  • 2 Downloads

Abstract

Two coordination polymers (CPs) material, [Zn(μ-Cl)2(μ-bpy)] (bpy = 4,4′-bipyridine) and [Cu(bpy)(phen)(ClO4)2]n (phen = 1,10-phenanthroline), were prepared, and their structures were determined by single-crystal X-ray crystallography showing grid-like 2D network and 1D zigzag chain, respectively. Both CPs and their mixtures were investigated as potential catalysts for ammonium perchlorate (AP) thermal decomposition by means of thermogravimetery and differential scanning calorimetery analysis. The results revealed their significant catalytic activity by decreasing the peak temperature of AP decomposition from 434 to 300 °C and increasing evolved heat from 409 up to 1622 Jg−1. The decomposition temperature ranges of catalyzed samples have also contracted from 178 to 47 °C, almost one-third comparing to decomposition temperature range of AP. Kissinger method was used to calculate the kinetic parameters of thermal decomposition of pure and mixed AP samples. The calculated activation energy and pre-exponential factor revealed effective thermokinetic influence of CPs and their mixtures on thermal decomposition of AP, by increasing the decomposition rate constant for AP from 4.6 × 10−3 s−1 at its peak temperature (434 °C), up to 15 × 10−3 s−1 at a much lower decomposition temperature (310 °C).

Keywords

Coordination polymer Thermal decomposition Catalyses Ammonium perchlorate 

Notes

Acknowledgements

Financial support from the research council of the University of Mazandaran is gratefully acknowledged.

References

  1. 1.
    Janiak C. Engineering coordination polymers towards applications. Dalton Trans. 2003;14:2781–804.CrossRefGoogle Scholar
  2. 2.
    Maji TK, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality. Nat Mater. 2007;6(2):142.PubMedCrossRefGoogle Scholar
  3. 3.
    Murray LJ, Dincă M, Long JR. Hydrogen storage in metal–organic frameworks. Chem Soc Rev. 2009;38(5):1294–314.PubMedCrossRefGoogle Scholar
  4. 4.
    Perry Iv JJ, Perman JA, Zaworotko MJ. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem Soc Rev. 2009;38(5):1400–17.CrossRefGoogle Scholar
  5. 5.
    Wang Z, Cohen SM. Postsynthetic modification of metal–organic frameworks. Chem Soc Rev. 2009;38(5):1315–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Boldyrev V. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36.CrossRefGoogle Scholar
  7. 7.
    Jacobs PWM, Whitehead H. Decomposition and combustion of ammonium perchlorate. Chem Rev. 1969;69(4):551–90.CrossRefGoogle Scholar
  8. 8.
    Keenan AG, Siegmund RF. Thermal decomposition of ammonium perchlorate. Chem Soc Rev. 1969;23(3):430–52.CrossRefGoogle Scholar
  9. 9.
    Mallick L, Kumar S, Chowdhury A. Thermal decomposition of ammonium perchlorate—a TGA–FTIR–MS study: part I. Thermochim Acta. 2015;610:57–68.CrossRefGoogle Scholar
  10. 10.
    Sun X, Qiu X, Li L, Li G. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg Chem. 2008;47(10):4146–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Tang G, Tian S, Zhou Z, Wen Y, Pang A, Zhang Y, et al. ZnO micro/nanocrystals with tunable exposed (0001) facets for enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. J Phys Chem C. 2014;118(22):11833–41.CrossRefGoogle Scholar
  12. 12.
    Tang G, Wen Y, Pang A, Zeng D, Zhang Y, Tian S, et al. The atomic origin of high catalytic activity of ZnO nanotetrapods for decomposition of ammonium perchlorate. CrystEngComm. 2014;16(4):570–4.CrossRefGoogle Scholar
  13. 13.
    Fitzgerald R, Brewster M. Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate. Combust Flame. 2004;136(3):313–26.CrossRefGoogle Scholar
  14. 14.
    Shusser M, Culick FEC, Cohen NS. Combustion response of ammonium perchlorate composite propellants. J Propuls Power. 2002;18(5):1093–100.CrossRefGoogle Scholar
  15. 15.
    Dey A, Nangare V, More PV, Khan MAS, Khanna PK, Sikder AK, et al. A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Adv. 2015;5(78):63777–85.CrossRefGoogle Scholar
  16. 16.
    Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17(2):135–49.CrossRefGoogle Scholar
  17. 17.
    Zhou Z, Tian S, Zeng D, Tang G, Xie C. MOX (M = Zn Co, Fe)/AP shell–core nanocomposites for self-catalytical decomposition of ammonium perchlorate. J Alloys Compd. 2012;513:213–9.CrossRefGoogle Scholar
  18. 18.
    Li B, Wei Q, Yang Q, Chen S, Gao S. Synthesis, structure, and thermophysical properties of an energetic complex Co (3-(2-pyridyl)-5-(3′-pyridyl)-1 H-1, 2, 4-triazole)3·H2O. J Chem Eng Data. 2011;56(7):3043–6.CrossRefGoogle Scholar
  19. 19.
    Liu J-J, Liu Z-L, Cheng J, Fang D. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: an energetic coordination polymer [Pb2 (C5H3N5O5) 2 (NMP)· NMP] n. J Solid State Chem. 2013;200:43–8.CrossRefGoogle Scholar
  20. 20.
    Yang Y, Bai Y, Zhao F, Yao E, Yi J, Xuan C, et al. Effects of metal organic framework Fe-BTC on the thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6(71):67308–14.CrossRefGoogle Scholar
  21. 21.
    Wang C, Li J, Fan X, Zhao F, Zhang W, Zhang G, et al. 5-Ferrocenyl-1H-tetrazole-derived transition-metal complexes: synthesis, crystal structures and catalytic effects on the thermal decomposition of the main components of solid propellants. Eur J Inorg Chem. 2015;2015(6):1012–21.CrossRefGoogle Scholar
  22. 22.
    Zhao H, Zhu X, Shang Y, Chen S, Li B, Bian Z. Ferrocene and [3] ferrocenophane-based β-diketonato copper (ii) and zinc (ii) complexes: synthesis, crystal structure, electrochemistry and catalytic effect on thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6(41):34476–83.CrossRefGoogle Scholar
  23. 23.
    Zheng X, Li P, Zheng S, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Cu (OH) 2· 2Cr (OH) 3 nanoparticles. Powder Technol. 2014;268:446–51.CrossRefGoogle Scholar
  24. 24.
    Fischer H, Tom G, Taube H. Intramolecular electron transfer mediated by 4, 4′-bipyridine and related bridging groups. J Am Chem Soc. 1976;98(18):5512–7.CrossRefGoogle Scholar
  25. 25.
    Pro C. Agilent Technologies Ltd. Yarnton, England. 2011.Google Scholar
  26. 26.
    Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71(1):3–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fernandes R, Takahashi P, Frem R, Netto A, Mauro A, Matos J. Synthesis, spectral and thermal studies on dicarboxylate-bridged palladium (II) coordination polymers. Part II. J Therm Anal Calorim. 2009;97(1):153.CrossRefGoogle Scholar
  28. 28.
    Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed Engl. 1998;37(11):1460–94.PubMedCrossRefGoogle Scholar
  29. 29.
    Hu C, Englert U. Crystal to crystal transformation from a chain polymer to a two dimensional network at low temperatures. Angew Chem Int Ed Engl. 2005;44(15):2281–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Tong M-L, Chen X-M, Ng SW. Catena-poly [[[bis (perchlorato-O)(1, 10-phenanthroline-N, N′) copper (II)]-μ-4, 4′-bipyridine-N: N′] monohydrate]. Acta Crystallogr C. 2000;56(9):iuc0000213-e375.CrossRefGoogle Scholar
  31. 31.
    Pickardt J, Staub B. Metall (II)-Diazin Komplexe: Kristallstrukturen von Cd (pyrazin) Br2, Cd(pyrazin)I2, Cu(pyrazin)Cl2 und Cd(pyrimidin)(NO3)2·2H2O/Metal(II) diazine complexes: crystal structures of Cd(pyrazine)Br2, Cd(pyrazine)I2, Cu(pyrazine)Cl2, and Cd(pyrimidine)(NO3)2·2H2O. Z Naturforsch B J Chem Sci. 1997;52(12):1456–60.CrossRefGoogle Scholar
  32. 32.
    Xu H, Wang X, Zhang L. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol. 2008;185(2):176–80.CrossRefGoogle Scholar
  33. 33.
    Wang Y, Yang X, Lu L, Wang X. Experimental study on preparation of LaMO3 (M = Fe Co, Ni) nanocrystals and their catalytic activity. Thermochim Acta. 2006;443(2):225–30.CrossRefGoogle Scholar
  34. 34.
    Jing D, Chen D, Fan G, Zhang Q, Xu J, Gou S, et al. From a novel energetic coordination polymer precursor to diverse Mn2O3 nanostructures: control of pyrolysis products morphology achieved by changing the calcination atmosphere. Cryst Growth Des. 2016;16(12):6849–57.CrossRefGoogle Scholar
  35. 35.
    Xie G, Li B, Chen S, Yang Q, Wei W, Gao S. Cobalt (II) coordination polymers built on isomeric dipyridyl triazole ligands with pyromellitic acid: synthesis, characterization and their effects on the thermal decomposition of ammonium perchlorate. Sci China Chem. 2012;55(3):443–50.CrossRefGoogle Scholar
  36. 36.
    Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.CrossRefGoogle Scholar
  37. 37.
    Said A. The role of copper-chromium oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1991;37(5):959–67.CrossRefGoogle Scholar
  38. 38.
    Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48.CrossRefGoogle Scholar
  39. 39.
    Kinnunen T-J, Haukka M, Pesonen E, Pakkanen TA. Ruthenium complexes with 2, 2′-, 2, 4′-and 4, 4′-bipyridine ligands: the role of bipyridine coordination modes and halide ligands. J Organomet Chem. 2002;655(1–2):31–8.CrossRefGoogle Scholar
  40. 40.
    Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2013;113(2):721–30.CrossRefGoogle Scholar
  41. 41.
    Eslami A, Modanlou Juibari N, Hosseini SG, Abbasi M. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate. Central Eur J Energ Mater. 2017;14:152–68.CrossRefGoogle Scholar
  42. 42.
    Modanlou Juibari N, Eslami A. Green synthesis of ZnCo2O4 nanoparticles by Aloe albiflora extract and its application as catalyst on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017;130(3):1327–33.CrossRefGoogle Scholar
  43. 43.
    Li Y-F, Zhai L-J, Xu K-Z, Wang B-Z, Song J-R, Zhao F-Q. Thermal behaviors of a novel nitrogen-rich energetic compound. J Therm Anal Calorim. 2016;126(3):1167–73.CrossRefGoogle Scholar
  44. 44.
    Rosso L, Tuckerman ME. Direct evidence of an anomalous charge transport mechanism in ammonium perchlorate crystal in an ammonia-rich atmosphere from first-principles molecular dynamics. Solid State Ion. 2003;161(3–4):219–29.CrossRefGoogle Scholar
  45. 45.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  46. 46.
    Morisaki S, Komamiya K. Differential thermal analysis and thermogravimetry of ammonium perchlorate at pressures up to 51 ATM. Thermochim Acta. 1975;12(3):239–51.CrossRefGoogle Scholar
  47. 47.
    Hosseini SG, Zarei MA, Toloti SJH, Kardan H, Alavi MA. A facile synthesis of boron nanostructures and investigation of their catalytic activity for thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2018;131(2):925–35.CrossRefGoogle Scholar
  48. 48.
    Zheng S, Liu J, Wang Y, Li F, Xiao L, Ke X, et al. Effect of aluminum morphology on thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018;134(3):1823–8.CrossRefGoogle Scholar
  49. 49.
    Pandas HM, Fazli M. Fabrication of MgO and ZnO nanoparticles by the aid of eggshell bioactive membrane and exploring their catalytic activities on thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018;131(3):2913–24.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Faculty of ChemistryAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations