Recrystallisation of ferulic acid using the anti-solvent and sonocrystallisation processes

  • Taynara Batista Lins MeloEmail author
  • Rayanne Sales Araújo de Batista
  • José Venâncio Chaves Júnior
  • Fabrício Havy Dantas de Andrade
  • Fábio Santos de Souza
  • Rui Oliveira de Macêdo


In the present study, ferulic acid (FA) crystals were obtained via the crystallisation process using two different techniques (anti-solvent and sonocrystallisation), and their solid-state characteristics were evaluated for aqueous solubility. The anti-solvent technique was performed using methanol (FA-M), acetic acid (FA-A), and isopropyl alcohol (FA-I) as solvents and water as the anti-solvent. For sonocrystallisation, the same process was performed using a tip sonicator (FA-Ms, FA-As, FA-Is). X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry–differential thermal analysis, particle distribution, scanning electron microscopy (SEM), and aqueous solubility analysis were performed. On the diffractogram and FTIR spectrum of FA and the crystals obtained, peaks with similar diffraction angles and absorption bands were observed, with variations in the relative intensity. The DSC and DTA curves of FA and the crystals obtained show a similar peak temperature. The TG curves show a single step of mass loss, but in the crystals this stage occurred at a lower temperature. A decrease in the particle size of the crystals was observed, and consequently, the solubility was improved relative to the drug. SEM is in accordance with particle size and distribution data, with the observation of more regular crystalline structures. Among the crystals studied, FA-I crystal showed greater particle size decrease and improved solubility compared to raw FA, which may lead to improvements in bioavailability and technological properties.


Crystallisation Solid-state properties DSC Solubility 



  1. 1.
    Stephenson GA. Applications of X-ray powder diffraction in the pharmaceutical industry. Rigaku J. 2005;22:2–15.Google Scholar
  2. 2.
    Li ZG, et al. New applications of electron diffraction in the pharmaceutical industry: polymorph determination by using a combination of electron diffraction and synchrotron X-ray powder diffraction techniques. Microsc Microanal. 2002;8:134–8.CrossRefGoogle Scholar
  3. 3.
    Bueno MM, Rech N. Insumos farmacêuticos-aspectos técnicos, científicos e regulatórios. In: Storpirtis S, Gonçalves JE, Chiann C, Gai MN, editors. Biofarmacotécnica. Rio de Janeiro: Guanabara Koogan; 2009. p. 32–65.Google Scholar
  4. 4.
    Liu B, et al. Interaction of cinnamic acid derivatives with β-cyclodextrin in water: experimental and molecular modeling studies. Food Chem. 2016;194:1156–63.CrossRefGoogle Scholar
  5. 5.
    Jójárt-Laczkovich O, et al. Investigation of recrystallization of amorphous trehalose through hot-humidity stage X-ray powder diffraction. Eur J Pharm Sci. 2016;95:145–51.CrossRefGoogle Scholar
  6. 6.
    Souza CMP, Santos JAB, Nascimento AL, Júnior JVC, Júnior FJDLR, Limaneto SA, Souza FS, Macêdo RO. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2018;131:681–9.CrossRefGoogle Scholar
  7. 7.
    Júnior FJDLR, et al. Investigation of the thermal behavior of inclusion complexes with antifungal activity. J Therm Anal Calorim. 2018;133:641–8.CrossRefGoogle Scholar
  8. 8.
    Variankaval N, Cote AS. From form to function: crystallization of active pharmaceutical ingredients. Bioeng Transl Med. 2008;54:1682–8.Google Scholar
  9. 9.
    Belkacem N, Salem MAS, Alkhatib HS. Effect of ultrasound on the physico-chemical properties of poorly soluble drugs: antisolvent sonocrystallization of ketoprofen. Powder Technol. 2015;285:16–24.CrossRefGoogle Scholar
  10. 10.
    Li W, Zhao X, Sun X, Zu Y, Liu Y, Ge Y. Evaluation of antioxidant ability in vitro and bioavailability of trans-cinnamic acid nanoparticle by liquid antisolvent precipitate. J Nanomater. 2016;2016:84.Google Scholar
  11. 11.
    Su CS, Wu PY, Jheng WD. Recrystallization of phenacetin and sulfathiazole using the sonocrystallization process. J Taiwan Inst Chem Eng. 2016;59:106–12.CrossRefGoogle Scholar
  12. 12.
    Sriamornsak P, Burapapadh K. Characterization of recrystallized itraconazole prepared by cooling and anti-solvent crystallization. Asian J Pharm Sci. 2015;10:230–8.CrossRefGoogle Scholar
  13. 13.
    El Bazi W, Jaoude MTMA, Porte C, Mabille I, Havet JL. Isothermal crystallization of glycine in semi-continuous mode by anti-solvent addition. J Cryst Growth. 2018;498:202–8.CrossRefGoogle Scholar
  14. 14.
    Zhao Z. Moghadasian MH Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 2008;109:691–702.CrossRefGoogle Scholar
  15. 15.
    de Oliveira DM, et al. Biodisponibilidade de ácidos fenólicos. Quim Nova. 2011;34:1051–6.CrossRefGoogle Scholar
  16. 16.
    Mancuso C, Santangelo R. Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol. 2014;65:185–95.CrossRefGoogle Scholar
  17. 17.
    Wang J, et al. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 2011;124:1069–75.CrossRefGoogle Scholar
  18. 18.
    Higuchi T, Connors KA. Phase-solubility techniques. Adv Anal Chem Instr. 1965;4:117–212.Google Scholar
  19. 19.
    Sohn YT, Oh JH. Characterization of physicochemical properties of ferulic acid. Arch Pharm Res. 2003;26:1002–8.CrossRefGoogle Scholar
  20. 20.
    Yu D-G, et al. Third generation solid dispersions of ferulic acid in electrospun composite nanofibers. Int J Pharm. 2010;400:158–64.CrossRefGoogle Scholar
  21. 21.
    USP. The United States pharmacopoeia. 34th ed. United States Pharmacopeial Convention: Rockville; 2011.Google Scholar
  22. 22.
    Olga G, Styliani C, Ioannis RG. Coencapsulation of ferulic and gallic acid in hp-b-cyclodextrin. Food Chem. 2015;185:33–40.CrossRefGoogle Scholar
  23. 23.
    Bezerra GSN, et al. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Therm Anal Calorim. 2017;127:1683–91.CrossRefGoogle Scholar
  24. 24.
    Correia LP, Procópio JVV, de Santana CP, Santos AFO, de Medeiros Cavalcante HM, Macêdo RO. Characterization of herbal medicine with different particle sizes using pyrolysis GC/MS, SEM, and thermal techniques. J Therm Anal Calorim. 2013;111:1691–8.CrossRefGoogle Scholar
  25. 25.
    Nemen D, Lemos-Senna E. Preparação e caracterização de suspensões coloidais de nanocarreadores lipídicos contendo resveratrol destinados à administração cutânea. Quim Nova. 2011;34:408–13.CrossRefGoogle Scholar
  26. 26.
    Souza PMS, Lobo FA, Rosa AH, Fraceto LF. Desenvolvimento de nanocápsulas de poli-e-caprolactona contendo o herbicida atrazina. Quim Nova. 2012;35:132–7.CrossRefGoogle Scholar
  27. 27.
    Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.CrossRefGoogle Scholar
  28. 28.
    Dias SBT, Nascimento TG, et al. Polymorphic characterization and compatibility study of clozapine: implications on its stability and some biopharmaceutics properties. J Therm Anal Calorim. 2015;120:795–805.CrossRefGoogle Scholar
  29. 29.
    Mosharraf M, Nyström C. The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm. 1995;122:35–47.CrossRefGoogle Scholar
  30. 30.
    da Fonseca Antunes AB, De Geest BG, Vervaet C, Remon JP. Solvent-free drug crystal engineering for drug nano-and micro suspensions. Eur J Pharm Sci. 2013;2013(48):121–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Taynara Batista Lins Melo
    • 1
    Email author
  • Rayanne Sales Araújo de Batista
    • 1
  • José Venâncio Chaves Júnior
    • 2
  • Fabrício Havy Dantas de Andrade
    • 1
    • 3
  • Fábio Santos de Souza
    • 1
  • Rui Oliveira de Macêdo
    • 1
  1. 1.Pharmaceutical Sciences DepartmentFederal University of Paraíba - UFPBJoão PessoaBrazil
  2. 2.Pharmaceutical Sciences DepartmentFederal University of Rio Grande do Norte – UFRNNatalBrazil
  3. 3.Pharmaceutical Sciences DepartmentPostgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, University CityRecifeBrazil

Personalised recommendations