Advertisement

Second law analysis for nanofluid flow in mini-channel heat sink with finned surface: a study on fin geometries

  • Mostafa Azadi
  • Elham Hosseinirad
  • Faramarz HormoziEmail author
  • Saman Rashidi
Article
  • 10 Downloads

Abstract

In this numerical work, a second law analysis is carried out for the nanofluid flow and heat transfer in the mini-channel with finned surface. The mini-fins with various geometries, including trapezoidal, square, triangular, and sinusoidal, are located on the bottom surface of the mini-channel. The effects of mini-fins geometry, mini-fins number, Reynolds number, and solid volume fraction of nanoparticles on the temperature and velocity distributions, frictional and thermal irreversibilities, and Bejan number inside the mini-channel are studied. The numerical method is validated with the experimental data. The results show that the sinusoidal, triangular, square, and trapezoidal mini-fins generate up to 66.23%, 61.87%, 59.21%, and 57.80%, respectively, lower thermal irreversibility as compared with the smooth mini-channel. Among mini-fin geometries, the triangular mini-fins generate the maximum frictional irreversibility, while the trapezoidal mini-fins provide the minimum frictional irreversibility. The frictional irreversibility increases about 108.56%, while the thermal irreversibility decreases up to 46.33% as the mini-fin number increases from one to nine. The thermal irreversibility diminishes about 49% by boosting the Reynolds number from 100 to 500. Usage of nanofluid increases both frictional and thermal irreversibilities. Finally, the thermal irreversibility is a dominant term in the total irreversibility and the effects of frictional irreversibility can be ignored.

Keywords

Second law analysis Mini-channel Mini-fin Nanofluid Geometry 

List of symbols

A

Surface (m2)

Be

Bejan number (−)

cp

Specific heat at constant pressure (J kg−1 K−1)

Dh

Hydraulic diameter of mini-channel (m)

f

Friction factor (−)

h

Heat transfer coefficient (W m −2 K  −1)

Hf

Fin height (mm)

Hch

Mini-channel width (mm)

Hb

Thickness of bottom wall in mini-channel (mm)

k

Thermal conductivity of fluid (W m−1 K−1)

Lch

Mini-channel length (mm)

n

Constant number (−)

Nu

Nusselt number (−)

p

Pressure (Pa)

PEC

Performance evaluation criteria (−)

q

Heat flux (W m−2)

Re

Reynolds number (−)

S

Distance between two mini-fins (mm)

\(S^{\prime\prime\prime}_{\text{g}}\)

Irreversibility rate (W m−3 K−1)

T

Temperature (K)

u, v

Velocities (m s−1)

wf

Fin width (mm)

x, y

Rectangular coordinate components (m)

Greek symbols

μ

Dynamic viscosity (kg m−1 s−1)

ρ

Density of fluid (kg m−3)

φ

Solid volume fraction of nanoparticles (−)

Subscripts/superscripts

ave

Average

b

Bottom

f

Fluid

fr

Frictional

in

Inlet

max

Maximum

nf

Nanofluid

out

Outlet

p

Particle

s

Solid wall, smooth mini-channel

th

Thermal

w

Wall

Notes

References

  1. 1.
    Parmar S, Patel K, Jejurkar A. A review of air conditioning with the use of mini-channel and micro-channel heat exchanger. Int J Sci Eng Res. 2017;8(4):86–90.Google Scholar
  2. 2.
    Arteconi A, Giuliani G, Tartuferi M, Polonara F, editors. Characterization of a mini-channel heat exchanger for a heat pump system. Journal of Physics: Conference Series; 2014: IOP Publishing.Google Scholar
  3. 3.
    Giurgiu O, Pleşa A, Socaciu L. Plate heat exchangers–flow analysis through mini channels. Energy Procedia. 2016;85:244–51.CrossRefGoogle Scholar
  4. 4.
    Robles A, Duong V, Martin AJ, Guadarrama JL, Diaz G. Aluminum minichannel solar water heater performance under year-round weather conditions. Sol Energy. 2014;110:356–64.CrossRefGoogle Scholar
  5. 5.
    Ahammed N, Asirvatham LG, Wongwises S. Thermoelectric cooling of electronic devices with nanofluid in a multiport minichannel heat exchanger. Exp Thermal Fluid Sci. 2016;74:81–90.CrossRefGoogle Scholar
  6. 6.
    An Z, Shah K, Jia L, Ma Y. A parametric study for optimization of minichannel based battery thermal management system. Appl Therm Eng. 2019;154:593–601.CrossRefGoogle Scholar
  7. 7.
    Bohdal T, Charun H, Kruzel M, Sikora M. High pressure refrigerants condensation in vertical pipe minichannels. Int J Heat Mass Transf. 2019;134:1250–60.CrossRefGoogle Scholar
  8. 8.
    Dixit T, Ghosh I. Review of micro-and mini-channel heat sinks and heat exchangers for single phase fluids. Renew Sustain Energy Rev. 2015;41:1298–311.CrossRefGoogle Scholar
  9. 9.
    Liu D, Liu M, Xing D, Xu S. Flow and heat transfer performance of a mini-channel radiator with cylinder disturbed flow. Exp Thermal Fluid Sci. 2011;35(6):1202–8.CrossRefGoogle Scholar
  10. 10.
    Khoshvaght-Aliabadi M, Rad SH, Hormozi F. Al2O3–water nanofluid inside wavy mini-channel with different cross-sections. J Taiwan Inst Chem Eng. 2016;58:8–18.CrossRefGoogle Scholar
  11. 11.
    Hosseinirad E, Khoshvaght-Aliabadi M, Hormozi F. Three-dimensional numerical study on thermal-hydraulic performance of twisted mini-channel using Al2O3–H2O nanofluid. Heat Transf Eng. 2019.  https://doi.org/10.1080/01457632.2018.1528063.CrossRefGoogle Scholar
  12. 12.
    Zhang J, Diao Y, Zhao Y, Zhang Y. An experimental investigation of heat transfer enhancement in minichannel: combination of nanofluid and micro fin structure techniques. Exp Thermal Fluid Sci. 2017;81:21–32.CrossRefGoogle Scholar
  13. 13.
    Saeed M, Kim M-H. Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transf. 2018;120:671–82.CrossRefGoogle Scholar
  14. 14.
    Chai L, Shaukat R, Wang L, Wang HS. A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks. Appl Therm Eng. 2018;135:334–49.CrossRefGoogle Scholar
  15. 15.
    Sarbazi Z, Hormozi F. Optimization of thermal and hydraulic performance of nanofluids in a rectangular miniature-channel with various fins using response surface methodology. J Therm Anal Calorim. 2019;137(3):711–33.CrossRefGoogle Scholar
  16. 16.
    Ghahremannezhad A, Vafai K. Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates. Int J Heat Mass Transf. 2018;122:1313–26.CrossRefGoogle Scholar
  17. 17.
    Khalifa MA, Jaffal HM. Effects of channel configuration on hydrothermal performance of the cylindrical mini-channel heat sinks. Appl Therm Eng. 2019;148:1107–30.CrossRefGoogle Scholar
  18. 18.
    Al-Rashed AA, Kalidasan K, Kolsi L, Velkennedy R, Aydi A, Hussein AK, et al. Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int J Mech Sci. 2018;135:362–75.CrossRefGoogle Scholar
  19. 19.
    Pordanjani AH, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. Int J Mech Sci. 2019;152:99–117.CrossRefGoogle Scholar
  20. 20.
    Gorjaei AR, Soltani M, Bahiraei M, Kashkooli FM. CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: Heat transfer and entropy generation analyses. Int J Mech Sci. 2018;146:396–404.CrossRefGoogle Scholar
  21. 21.
    El malik Bouchoucha A, Bessaïh R, Oztop HF, Al-Salem K, Bayrak F. Natural convection and entropy generation in a nanofluid filled cavity with thick bottom wall: effects of non-isothermal heating. Int J Mech Sci. 2017;126:95–105.CrossRefGoogle Scholar
  22. 22.
    Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2019;135(1):177–94.CrossRefGoogle Scholar
  23. 23.
    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132(2):1189–200.CrossRefGoogle Scholar
  24. 24.
    Mahian O, Kianifar A, Heris SZ, Wongwises S. First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: effects of nanoparticle shape and tube materials. Int J Heat Mass Transf. 2014;78:1166–76.CrossRefGoogle Scholar
  25. 25.
    Bahiraei M, Majd SM. Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network. Adv Powder Technol. 2016;27(2):673–83.CrossRefGoogle Scholar
  26. 26.
    Bahiraei M, Mazaheri N. Second law analysis for flow of a nanofluid containing graphene–platinum nanoparticles in a minichannel enhanced with chaotic twisted perturbations. Chem Eng Res Des. 2018;136:230–41.CrossRefGoogle Scholar
  27. 27.
    Al-Rashed AA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Nguyen TK. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Phys A. 2019;521:724–36.CrossRefGoogle Scholar
  28. 28.
    Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37.CrossRefGoogle Scholar
  29. 29.
    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.CrossRefGoogle Scholar
  30. 30.
    Drew DA, Passman SL. Relation of microstructure to constitutive equations: theory of multicomponent fluids. Berlin: Springer; 1999. p. 153–92.Google Scholar
  31. 31.
    Yang S, Tao W. Heat transfer. Beijing: Higher Education Press; 2006.Google Scholar
  32. 32.
    Hamilton RL, Crosser O. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962;1(3):187–91.CrossRefGoogle Scholar
  33. 33.
    Bejan A, Kestin J. Entropy generation through heat and fluid flow. American Society of Mechanical Engineers Digital Collection; 1983.Google Scholar
  34. 34.
    Hosseinirad E, Hormozi F. Influence of shape, number, and position of horizontal minifins on thermal-hydraulic performance of minichannel heat sink using nanofluid. Heat Transf Eng. 2017;38(9):892–903.CrossRefGoogle Scholar
  35. 35.
    Patankar SV. Numerical heat transfer and fluid flow. New York: Hemisphere Publ. Corp; 1980. p. 58.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Chemical, Petroleum and Gas EngineeringSemnan UniversitySemnanIran
  2. 2.Department of Energy, Faculty of New Science and TechnologiesSemnan UniversitySemnanIran

Personalised recommendations