Advertisement

Experimental study on hydraulic and thermal characteristics of composite porous wick with spherical–dendritic powders

  • Dongdong Wang
  • Jinxin Wang
  • Xiangjun Bao
  • Guang Chen
  • Huaqiang ChuEmail author
Article
  • 22 Downloads

Abstract

A composite porous wick with spherical–dendritic powders is proposed, in which the dendritic powders fill the gap between the spherical powders. A unique biporous structure can be realized in this composite porous wick, including small pores between dendritic powders, small pores between spherical and dendritic powders and large pores between spherical powders. Two metal powders (copper and nickel) with two structures (spherical and dendritic) are chosen as the prepared materials, and four composite porous wicks are fabricated. The hydraulic and thermal characteristics of the composite porous wick are studied experimentally. Two capillary pumping stages have been observed in the composite porous wick. And the combination of powders with different metal materials or different structures reduces the effective thermal conductivity of porous wick. Two evaporation heat transfer modes have been observed in evaporation heat transfer experiment, including the evaporation in the vapor grooves and the meniscus evaporation in porous wick. The composite porous wick with dendritic copper powders shows good evaporation heat transfer performance, in which the effective thermal conductivity is not the lowest. Both higher local thermal conductivity and larger equivalent pore diameter exist in this composite porous wick, which is advantage to the meniscus evaporation.

Keywords

Composite porous wick Spherical–dendritic powders Capillary pumping flow Effective thermal conductivity Evaporation heat transfer 

Notes

Acknowledgements

The authors greatly appreciate the financial support provided by the National Natural Science Foundation of China (No. 51706001) and the Provincial Natural Science Foundation of Anhui (KJ2016A095).

References

  1. 1.
    Maydanik YF. Loop heat pipes. Appl Therm Eng. 2005;25:635–57.CrossRefGoogle Scholar
  2. 2.
    Maydanik YF, Chernysheva MA, Pastukhov VG. Review: loop heat pipes with flat evaporators. Appl Therm Eng. 2014;67:294–307.CrossRefGoogle Scholar
  3. 3.
    Zhou G, Li J. Two-phase flow characteristics of a high performance loop heat pipe with flat evaporator under gravity. Int J Heat Mass Transf. 2018;117:1063–74.CrossRefGoogle Scholar
  4. 4.
    Li H, Liu Z, Chen B, Liu W, Li C, Yang J. Development of biporous wicks for flat-plate loop heat pipe. Exp Thermal Fluid Sci. 2012;37:91–7.CrossRefGoogle Scholar
  5. 5.
    Singh R, Akbarzadeh A, Mochizuki M. Effect of wick characteristics on the thermal performance of the miniature loop heat pipe. J Heat Transf. 2009;131:082601.CrossRefGoogle Scholar
  6. 6.
    Wu SC, Hsieh BH, Wang D, Chen YM. Manufacture of a biporous nickel wick and its effect on LHP heat transfer performance enhancement. Heat Mass Transf. 2015;51:1549–58.CrossRefGoogle Scholar
  7. 7.
    Chen BB, Liu W, Liu ZC, Li H, Yang JG. Experimental investigation of loop heat pipe with flat evaporator using biporous wick. Appl Therm Eng. 2012;42:34–40.CrossRefGoogle Scholar
  8. 8.
    Liu Z, Li H, Chen B, Yang J, Liu W. Operational characteristics of flat type loop heat pipe with biporous wick. Int J Therm Sci. 2012;58:180–5.CrossRefGoogle Scholar
  9. 9.
    Chen BB, Liu ZC, Liu W, Yang JG, Li H, Wang DD. Operational characteristics of two biporous wicks used in loop heat pipe with flat evaporator. Int J Heat Mass Transf. 2012;55:2204–7.CrossRefGoogle Scholar
  10. 10.
    Wang D, Liu Z, Shen J, Jiang C, Chen B, Yang J, Tu Z, Liu W. Experimental study of the loop heat pipe with a flat disk-shaped evaporator. Exp Thermal Fluid Sci. 2014;57:157–64.CrossRefGoogle Scholar
  11. 11.
    Wang D, Liu Z, Song H, Yang J, Wei L. Operational characteristics of a loop heat pipe with a flat evaporator and two primary biporous wicks. Int J Heat Mass Transf. 2015;89:33–41.CrossRefGoogle Scholar
  12. 12.
    Liu Z, Wang D, Jiang C, Yang J, Liu W. Experimental study on loop heat pipe with two-wick flat evaporator. Int J Therm Sci. 2015;94:9–17.CrossRefGoogle Scholar
  13. 13.
    Byon C, Kim SJ. Capillary performance of bi-porous sintered metal wicks. Int J Heat Mass Transf. 2012;55:4096–103.CrossRefGoogle Scholar
  14. 14.
    Wang J, Catton I. Evaporation heat transfer in thin biporous media. Heat Mass Transf. 2001;37:275–81.CrossRefGoogle Scholar
  15. 15.
    Mottet L, Prat M. Numerical simulation of heat and mass transfer in bidispersed capillary structures: application to the evaporator of a loop heat pipe. Appl Therm Eng. 2016;102:770–84.CrossRefGoogle Scholar
  16. 16.
    Lin FC, Liu BH, Huang CT, Chen YM. Evaporative heat transfer model of a loop heat pipe with bidisperse wick structure. Int J Heat Mass Transf. 2011;54:4621–9.CrossRefGoogle Scholar
  17. 17.
    Semenic T, Lin YY, Catton I, Sarraf DB. Use of biporous wicks to remove high heat fluxes. Appl Therm Eng. 2008;28:278–83.CrossRefGoogle Scholar
  18. 18.
    Yeh CC, Chen CN, Chen YM. Heat transfer analysis of a loop heat pipe with biporous wicks. Int J Heat Mass Transf. 2009;52:4426–34.CrossRefGoogle Scholar
  19. 19.
    Lin FC, Liu BH, Juan CC, Chen Y-M. Effect of pore size distribution in bidisperse wick on heat transfer in a loop heat pipe. Heat Mass Transf. 2011;47:933–40.CrossRefGoogle Scholar
  20. 20.
    Xu J, Ji X, Yang W, Zhao Z. Modulated porous wick evaporator for loop heat pipes: experiment. Int J Heat Mass Transf. 2014;72:163–76.CrossRefGoogle Scholar
  21. 21.
    Ji X, Wang Y, Xu J, Huang Y. Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks. Appl Therm Eng. 2017;117:782–98.CrossRefGoogle Scholar
  22. 22.
    Nishikawara M, Nagano H. Parametric experiments on a miniature loop heat pipe with PTFE wicks. Int J Therm Sci. 2014;85:29–39.CrossRefGoogle Scholar
  23. 23.
    Boo JH, Chung WB. Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick. J Mech Sci Technol. 2005;19:1052–61.CrossRefGoogle Scholar
  24. 24.
    Santos PHD, Bazzo E, Becker S, Kulenovic R, Mertz R. Development of LHPs with ceramic wick. Appl Therm Eng. 2010;30:1784–9.CrossRefGoogle Scholar
  25. 25.
    Xu J, Zou Y, Fan M, Cheng L. Effect of pore parameters on thermal conductivity of sintered LHP wicks. Int J Heat Mass Transf. 2012;55:2702–6.CrossRefGoogle Scholar
  26. 26.
    Semenic T, Lin Y-Y, Catton I. Thermophysical properties of biporous heat pipe evaporators. J Heat Transfer. 2008;130:022602.CrossRefGoogle Scholar
  27. 27.
    Xin G, Cui K, Zou Y, Cheng L. Reduction of effective thermal conductivity for sintered LHP wicks. Int J Heat Mass Transf. 2010;53:2932–4.CrossRefGoogle Scholar
  28. 28.
    Ling W, Zhou W, Liu R, Qiu Q, Ke Y. Operational characteristics of loop heat pipes with porous copper fiber sintered sheet as wick. Appl Therm Eng. 2017;122:398–408.CrossRefGoogle Scholar
  29. 29.
    Tang Y, Tang H, Li J, Zhang S, Zhuang B, Sun Y. Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes. Appl Therm Eng. 2017;115:1020–30.CrossRefGoogle Scholar
  30. 30.
    Esarte J, Blanco JM, Bernardini A, San-José JT. Optimizing the design of a two-phase cooling system loop heat pipe: wick manufacturing with the 3D selective laser melting printing technique and prototype testing. Appl Therm Eng. 2017;111:407–19.CrossRefGoogle Scholar
  31. 31.
    Jafari D, Wits WW, Geurts BJ. Metal 3D-printed wick structures for heat pipe application: capillary performance analysis. Appl Therm Eng. 2018;143:403–14.CrossRefGoogle Scholar
  32. 32.
    Delker T, Pengra DB, Wong P. Interface pinning and the dynamics of capillary rise in porous media. Phys Rev Lett. 1996;76(16):2902–5.CrossRefGoogle Scholar
  33. 33.
    Li J, Zou Y, Cheng L. Experimental study on capillary pumping performance of porous wicks for loop heat pipe. Exp Thermal Fluid Sci. 2010;34(8):1403–8.CrossRefGoogle Scholar
  34. 34.
    Li J, Zou Y, Cheng L, Singh R, Akbarzadeh A. Effect of fabricating parameters on properties of sintered porous wicks for loop heat pipe. Powder Technol. 2010;204:241–8.CrossRefGoogle Scholar
  35. 35.
    Qu Y, Zhou K, Zhang KF, Tian Y. Effects of multiple sintering parameters on the thermal performance of bi-porous nickel wicks in Loop Heat Pipes. Int J Heat Mass Transf. 2016;99:638–46.CrossRefGoogle Scholar
  36. 36.
    Wang D, Wang J, Bao X, Chen G, Chu H. Evaporation heat transfer characteristics of composite porous wick with spherical–dendritic powders. Appl Therm Eng. 2019;152:825–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Energy and EnvironmentAnhui University of TechnologyMa’anshanChina

Personalised recommendations