Thermal decomposition behaviour and kinetics of a mixed solution: n-propyl nitrate and nitric acid solution

  • Qiang Xie
  • Yong Xie
  • Wei Liu
  • Lei Zhang
  • Shi Li
  • Houhe ChenEmail author


To provide a theoretical basis for improving the thermal safety of spent acid, its decomposition behaviour was studied. A mixed solution of n-propyl nitrate (NPN) and nitric acid was analysed using isoperibolic experiments and differential scanning calorimetry. An accurate kinetic model based on the analysis was proposed to describe the decomposition of the spent acid by applying an isoconversional method and nonlinear regression to the DSC data. We found that the thermal decomposition in the mixed solution involved two competing reactions: the decomposition of NPN in the nitric acid solution and the decomposition of nitric acid. The decomposition of the mixed solution followed a 0.9082th Prout–Tompkins equation with autocatalysis, with a differential kinetic mechanism function of f(α) = (1 − α)0.9082·α0.1291. Lastly, the thermal safety evaluation and thermodynamic parameters were studied. The self-accelerating decomposition temperature and the critical temperature of thermal runway were 338.70 K and 346.76 K, respectively, in an approximately closed system, and 347.25 K and 355.73 K, respectively, in an open system. These results show that the spent acid was more hazardous than the NPN and nitric acid solution. In addition, the thermal stability of the mixed solution in an open system was higher than that of the mixed solution in an approximately closed system.


Spent acid Nitrate ester Decomposition kinetics Mechanism function Self-accelerating decomposition temperature 



  1. 1.
    Rigas F, Sebos I, Doulia D. Safe handling of spent acids in nitroglycerine/nitroglycol plants. J Loss Prevent Proc. 1998;11:161–8.CrossRefGoogle Scholar
  2. 2.
    Chen CY, Wu CW, Duh YS, et al. An experimental study of worst case scenarios of nitric acid decomposition in a toluene nitration process. Process Saf Environ. 1998;76:211–6.CrossRefGoogle Scholar
  3. 3.
    Lu KT, Lin PC. Study on the stability of nitroglycerine spent acid. Process Saf Environ. 2009;87:87–93.CrossRefGoogle Scholar
  4. 4.
    Larkin A, Geddes JA, Martin RV, et al. global land use regression model for nitrogen dioxide air pollution. Environ Sci Technol. 2017;51:6957–64.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Levy JB, Adrian FJ. The thermal decomposition of nitrate esters. III. n-propyl nitrate. J Am Chem Soc. 1955;77:2015–6.CrossRefGoogle Scholar
  6. 6.
    Hiskey MA, Brower KR, Oxley JC. Thermal decomposition of nitrate esters. J Phys Chem. 1991;95:3955–60.CrossRefGoogle Scholar
  7. 7.
    Zeng XL, Chen WH, Liu JC, et al. A theoretical study of five nitrates: electronic structure and bond dissociation energies. J Mol Struc-Theochem. 2007;810:47–51.CrossRefGoogle Scholar
  8. 8.
    Zeng XL, Chen WH, Liu JC, et al. Experimental and theoretical studying the thermolysis of nitrate. J Therm Anal Calorim. 2008;91:359–63.CrossRefGoogle Scholar
  9. 9.
    Wang J, Liu DB, Zhou XL. Studies on the thermal decomposition kinetic of a nitrate Ester. Appl Mech Mater. 2012;182:1575–80.CrossRefGoogle Scholar
  10. 10.
    Camera E, Modena G, Zotti B. On the behaviour of nitrate esters in acid solution. II. Hydrolysis and oxidation of nitroglycol and nitroglycerin. Propell Explos Pyrot. 1982;7:66–9.CrossRefGoogle Scholar
  11. 11.
    Camera E, Modena G, Zotti B. On the behaviour of nitrate esters in acid solution. III. Oxidation of ethanol by nitric acid in sulphuric acid. Propell Explos Pyrot. 1983;8:70–3.CrossRefGoogle Scholar
  12. 12.
    Yang T, Chen L, Chen W, et al. Thermal stability of 2-ethylhexyl nitrate with acid. J Therm Anal Calorim. 2015;119:205–12.CrossRefGoogle Scholar
  13. 13.
    Pourmortazavi SM, Rahimi-Nasrabadi M, Kohsari I, et al. Non-isothermal kinetic studies on thermal decomposition of energetic materials. J Therm Anal Calorim. 2012;110:857–63.CrossRefGoogle Scholar
  14. 14.
    Pourmortazavi SM, Farhadi K, Mirzajani V, et al. Study on the catalytic effect of diaminoglyoxime on thermal behaviors, non-isothermal reaction kinetics and burning rate of homogeneous double-base propellant. J Therm Anal Calorim. 2016;125:121–8.CrossRefGoogle Scholar
  15. 15.
    Abusaidi H, Ghaieni HR, Pourmortazavi SM, et al. Effect of nitro content on thermal stability and decomposition kinetics of nitro-HTPB. J Therm Anal Calorim. 2016;124:935–41.CrossRefGoogle Scholar
  16. 16.
    Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, et al. Role of metal oxide nanomaterials on thermal stability of 1,3,6-trinitrocarbazole. Propell Explos Pyrot. 2016; 41.Google Scholar
  17. 17.
    Pourmortazavi SM, Rahimi-Nasrabadi M, Rai H, et al. Effect of nanomaterials on thermal stability of 1,3,6,8-tetranitro carbazole. Cent Eur J Energ Mat. 2017;14:201–16.CrossRefGoogle Scholar
  18. 18.
    Pourmortazavi SM, Kohsari I, Zandavar H, et al. Electrospinning and thermal characterization of nitrocellulose nanofibers containing a composite of diaminofurazan, aluminum nano-powder and iron oxide nanoparticles. Cellulose. 2019;26:4405–15.CrossRefGoogle Scholar
  19. 19.
    Pourmortazavi SM, Mirzajani V, Farhadi K. Thermal behavior and thermokinetic of double-base propellant catalyzed with magnesium oxide nanoparticles. J Therm Anal Calorim. 2019;137:93–104.CrossRefGoogle Scholar
  20. 20.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Pol Lett. 1964;6:183–95.Google Scholar
  21. 21.
    Venkatesh M, Ravi P, Tewari SP. Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method versus Flynn-Wall-Ozawa method. J Phys Chem A. 2013;117:10162–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  23. 23.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Poly Sci B Poly Lett. 1966;4:323–8.CrossRefGoogle Scholar
  24. 24.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  25. 25.
    Juibari NM, Eslami A. Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017;128:115–24.CrossRefGoogle Scholar
  26. 26.
    Söyleyici S, Çılgı GK. Thermal and kinetic analyses of 2,5-bis(2-hydroxyphenyl)- thiazolo[5,4-d]thiazole. J Therm Anal Calorim. 2014;118:705–9.CrossRefGoogle Scholar
  27. 27.
    Trache D, Maggi F, Palmucci I, et al. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.CrossRefGoogle Scholar
  28. 28.
    Bruijn TJWD, Jong WAD, Berg PJVD. Kinetic parameters in Avrami-Erofeev type reactions from isothermal and non-isothermal experiments. Thermochim Acta. 1981;45:315–25.CrossRefGoogle Scholar
  29. 29.
    Pielichowska K. The influence of polyoxymethylene molar mass on the oxidative thermal degradation of its nanocomposites with hydroxyapatite. J Therm Anal Calorim. 2016;124:751–65.CrossRefGoogle Scholar
  30. 30.
    Zhang YX, Chen HH, Chen T. Drying kinetics of RDX under atmospheric pressure and vacuum conditions. Energy Convers Manage. 2014;80:266–75.CrossRefGoogle Scholar
  31. 31.
    Li HC, Fu B. Handbook of practical chemistry. Bei Jing: Chemical Industry Press; 2007.Google Scholar
  32. 32.
    Zhang CX, Lu GB, Chen LP, et al. Two decoupling methods for non-isothermal DSC results of AIBN decomposition. J Hazard Mater. 2015;285:61–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Riesen R. Choosing the right baseline. User Commun. 2007;25:1–6.Google Scholar
  34. 34.
    Kučerík J, Schwarz J, Jäger A, et al. Character of transitions causing the physicochemical aging of a sapric histosol. J Therm Anal Calorim. 2014;118:1169–82.CrossRefGoogle Scholar
  35. 35.
    Burnham AK. Application of the Šesták-Berggren Equation to Organic and Inorganic Materials of Practical Interest. J Therm Anal Calorim. 2000;60:895–908.CrossRefGoogle Scholar
  36. 36.
    Bohn MA. Problems and faulty uses with the Prout-Tompkins description of autocatalytic reactions and the solutions. J Therm Anal Calorim. 2014;116:1–12.CrossRefGoogle Scholar
  37. 37.
    Yan QL, Künzel M, Zeman S, et al. The effect of molecular structure on thermal stability, decomposition kinetics and reaction models of nitric esters. Thermochim Acta. 2013;566:137–48.CrossRefGoogle Scholar
  38. 38.
    Lu G, Yang T, Chen L, et al. Thermal decomposition kinetics of 2-ethylhexyl nitrate under non-isothermal and isothermal conditions. J Therm Anal Calorim. 2016;124:471–8.CrossRefGoogle Scholar
  39. 39.
    Yan B, Li HY, Zhao NN, et al. Thermodynamic properties, detonation characterization and free radical of N-2′,4′-dinitrophenyl-3,3-dinitroazetidine. J Chem Thermodyn. 2014;69:152–6.CrossRefGoogle Scholar
  40. 40.
    Li HY, Yan B, Guan YL, et al. Thermodynamic properties, detonation characterisation and free radical of N-acetyl-3,3-dinitroazetidine. J Chem Thermodyn. 2015;90:87–91.CrossRefGoogle Scholar
  41. 41.
    Yan B, Li HY, Guan YL, et al. Thermodynamic properties of 3,3-dinitroazetidinium nitrate. J Chem Thermodyn. 2016;103:206–11.CrossRefGoogle Scholar
  42. 42.
    Zhang T, Hu R, Xie Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar
  43. 43.
    Morbidelli M, Varma A. A generalized criterion for parametric sensitivity: application to thermal explosion theory. Chem Eng Sci. 1988;43:91–102.CrossRefGoogle Scholar
  44. 44.
    Broccanello A. Prediction criteria of thermal runaway in the acid catalyzed esterification of acetic anhydride. Univ. of Padova. 2016.Google Scholar
  45. 45.
    Yang Q, Chen LP, Chen WH, et al. Research on the thermal stability of four nitrates by accelerating the rate calorimeter. J Saf Environ. 2012;1:188–92.Google Scholar
  46. 46.
    Wang P, Xie Q, Xu Y, et al. A kinetic investigation of thermal decomposition of 1,1′-dihydroxy-5,5′-bitetrazole-based metal salts. J Therm Anal Calorim. 2017;130:1213–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Qiang Xie
    • 1
  • Yong Xie
    • 2
  • Wei Liu
    • 1
  • Lei Zhang
    • 1
  • Shi Li
    • 1
  • Houhe Chen
    • 1
    Email author
  1. 1.Chemical Engineering Institute, Nanjing University of Science and TechnologyNanjingChina
  2. 2.Hubei Dongfang Chemical Industry Company Limited, Norinco GroupXiangyangChina

Personalised recommendations