Advertisement

Boron/potassium nitrate microspheres fabricated by electrostatic spraying and their combustion characteristic as pyrotechnic ignitor

  • Qian ZhongEmail author
  • Yanchun Li
  • Jun Chen
  • Dongming Song
Article
  • 12 Downloads

Abstract

Boron/potassium nitrate (B/KNO3) microspheres are fabricated by electrostatic spraying to enhance their combustion efficiency and capability of igniting target materials. Varying composition’s effect on reactivity and morphology was analyzed. Closed chamber tests were used to record the process of boron/potassium nitrate igniting guanidine nitrate/basic cupric nitrate gas generator. The results show that the spheres’ diameter is approximately 1–5 µm, the reaction peak temperature obtained from TG–DSC is decreased by 55 °C, and B/KNO3 sphere gets higher pressure and shorter ignition time. It takes only 2.18 s to ignite the gas generator completely, which is 2.32 s for traditional boron/potassium nitrate. In general, boron/potassium nitrate spheres show enhanced ignition capability and could be utilized in a broad variety of combustion systems.

Keywords

Boron/potassium nitrate Pyrotechnic igniter Combustion efficiency 

Notes

References

  1. 1.
    Mao CL, Li BX, Hu SQ, Wang YH. Overview of models of boron particle ignition in hot air. J Propuls Technol. 2001;22:6–9.Google Scholar
  2. 2.
    Sivan J, Haas Y, Grinstein D, Kochav S, Yegudayev G, Kalontarov L. Boron particle size effect on B/KNO3 ignition by a diode laser. Combust Flame. 2015;162:516–27.CrossRefGoogle Scholar
  3. 3.
    Hunt EM, Pantoya ML. Ignition dynamics and activation energies of metallic thermites: from nano- to micronscale particulate composites. J Appl Phys. 2005;98:1–8.CrossRefGoogle Scholar
  4. 4.
    Philippe G, Frederic O. Laser diode ignition of the B/KNO3 pyrotechnic mixture: an experimental study. Combust Sci Technol. 2007;179:1667–99.CrossRefGoogle Scholar
  5. 5.
    Klingenberg G. Experimental study on the performance of pyrotechnic igniters. Propellants, Explos, Pyrotech. 1984;9:91–107.CrossRefGoogle Scholar
  6. 6.
    Ryoi K, Ikeda K, Mateumura Y, Sato E, Kubo D. Automatically ignitable enhancer agent composition. US Patent. 2003; US 6,562,087B1.Google Scholar
  7. 7.
    BariSin D, Batinic-Haberle I. The influence of the various types of binder on the burning characteristics of the magnesium-, boron-, and aluminum-based igniters. Propellants, Explos, Pyrotech. 1994;19:127–32.CrossRefGoogle Scholar
  8. 8.
    Mei XL, Yang HT, Li XY, Li YC, Cheng Y. The effect of 5-amino-1H-tetrazole on the combustion performance and ignition capability of boron/potassium nitrate igniter. J Therm Anal Calorim. 2015;120:1749–54.CrossRefGoogle Scholar
  9. 9.
    Ciach T. Application of electro-hydro-dynamic atomization in drug delivery. J Drug Deliv Sci Technol. 2007;17:367–75.CrossRefGoogle Scholar
  10. 10.
    Chen DR, Pui DYH, Kaufman SL. Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1 μm diameter range. J Aerosol Sci. 1995;26:963–77.CrossRefGoogle Scholar
  11. 11.
    Soliwoda K, Rosowski M, Tomaszewska E, Tkacz-Szczesna B, Celichowski G, Psarski M, Grobelny J. Synthesis of monodisperse gold nanoparticles via electrospray-assisted chemical reduction method in cyclohexane. Colloid Surface A. 2015;482:148–53.CrossRefGoogle Scholar
  12. 12.
    Vishlaghi MB, Tabriz MF, Moradi MO. Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles. Mater Res Bull. 2012;47:1666–9.CrossRefGoogle Scholar
  13. 13.
    Valvo M, Lafont U, Munao D, Kelder EM. Electrospraying-assisted synthesis of tin nanoparticles for Li-ion battery electrodes. J Power Sources. 2009;189:297–302.CrossRefGoogle Scholar
  14. 14.
    Erven JV, Moerman R, Marijnissen JCM. Platinum nanoparticle production by EHDA. Aerosol Sci Technol. 2005;39:941–6.CrossRefGoogle Scholar
  15. 15.
    Schulz F, Franzka S, Schmid G. Nanostructured surfaces by deposition of metal nanoparticles by means of spray techniques. Adv Funct Mater. 2002;8:532–6.CrossRefGoogle Scholar
  16. 16.
    Mei XL, Zhong GY, Cheng Y. Ignition and combustion characteristics of aluminum/manganese iodate/nitrocellulose biocidal nanothermites. J Therm Anal Calorim. 2019;138:425–32.CrossRefGoogle Scholar
  17. 17.
    Yang HT, Liu YF, Huang HT, Zhao Y, Song KG, Wang HY, Xie WX, Cheng Y, Fan XZ. Preparation and characterization of the Al/Fe2O3/RDX/NC nanocomposites by electrospray. J Therm Anal Calorim. 2019;137:1615–20.CrossRefGoogle Scholar
  18. 18.
    Varsha B, Haridwar S. Influence of cellulosic binders on sensitivity and combustion behaviour of B-KNO3 ignition system. Def Sci J. 2006;56:345–51.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.CQC New Energy Technology School, Nanjing Vocational College of Information TechnologyNanjingPeople’s Republic of China
  2. 2.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations