Advertisement

Characterization of cassava biomass using differential scanning calorimetry and thermogravimetry for energy purposes

  • Cintia de Faria Ferreira CarraroEmail author
  • Carla Cristina de Almeida Loures
  • Leonardo Martins da Silva
  • Jose Adilson de Castro
Article
  • 17 Downloads

Abstract

Most of the agricultural industries generate daily waste, which due to toxicity or quantity deserve special attention. The cassava starch produces a significant quantity of residues, which must be rationally used for minimizing the environmental impact of the agricultural activities. The present study aims to enhance the use of this solid residue. We analyzed the cassava bagasse by means of the following techniques: thermogravimetric analysis (TG) and differential scanning calorimeters (DSC). It was addressed the effects of operational conditions (final temperature, heating rate, atmosphere, air flow and size of particles). The cassava bagasse samples collected in a cooperative production facility in Paraty-RJ were characterized using TGA/DSC in order to describe the thermal behavior of these residues. The DOE methodology proposed by Taguchi was used to analyze and cover a broader range of operational parameters. The most influential variables were identified for the process of heat production using DOE technique. These variables provide the best combination for heat flux with residence time of 30 min, air flow of 50 mL min−1, particle size sieved to 0.42–0.71 mm and heating rate of 25 °C min−1. The main parameters related with the thermal decomposition, effective activation energy and decomposition mechanism were newly determined using thermal techniques analysis methods (TGA/DSC) for the cassava residue.

Graphic abstract

Keywords

Cassava bagasse Differential scanning calorimetry Energy Thermogravimetry 

Notes

References

  1. 1.
    Hu G, Chen J, Gao J. Preparation and characteristics of oxidized potato starch films. Carbohydr Polym. 2009;76:291–8.  https://doi.org/10.1016/j.carbpol.2008.10.032.CrossRefGoogle Scholar
  2. 2.
    Shah U, Naqash F, Gani A, Masoodi FA. Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf. 2016;15:568–80.CrossRefGoogle Scholar
  3. 3.
    de SouzaYes Fernandes D, dos Santos TPR, Fernandes AM, Leonel M. Harvest time optimization leads to the production of native cassava starches with different properties. Int J Biol Macromol. 2019;132:710–21.  https://doi.org/10.1016/j.ijbiomac.2019.03.245.CrossRefPubMedGoogle Scholar
  4. 4.
    Pandey A, Soccol CR, Nigam P, Soccol V, Vanderberghe LPS, Mohan R. Biotechnological potential of agro-industrial residues II: Cassava bagasse. Bioresourse Technol. 2000;74:81–7.CrossRefGoogle Scholar
  5. 5.
    Ki OL, Kurniawan A, Lin CX, Ju YH, Ismadji S. Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol. 2013;145:157–61.  https://doi.org/10.1016/j.biortech.2013.01.122.CrossRefPubMedGoogle Scholar
  6. 6.
    Oluwasina OO, Olaleye FK, Olusegun SJ, Oluwasina OO, Mohallem NDS. Influence of oxidized starch on physicomechanical, thermal properties, and atomic force micrographs of cassava starch bioplastic film. Int J Biol Macromol. 2019;135:282–93.  https://doi.org/10.1016/j.ijbiomac.2019.05.150.CrossRefPubMedGoogle Scholar
  7. 7.
    Gazzotti S, Rampazzo R, Hakkarainen M, Bussini D, Ortenzi MA, Farina H, et al. Cellulose nanofibrils as reinforcing agents for PLA-based nanocomposites: an in situ approach. Compos Sci Technol. 2019;171:94–102.CrossRefGoogle Scholar
  8. 8.
    Qin Y, Liu Y, Yong H, Liu J, Zhang X, Liu J. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. Int J Biol Macromol. 2019;134:80–90.  https://doi.org/10.1016/j.ijbiomac.2019.05.029.CrossRefPubMedGoogle Scholar
  9. 9.
    Gavel A, Poria S, Sahoo P. Design of experiments analysis of abrasive friction behavior of Al-TiB2 composites. Mater Today Proc. 2019.  https://doi.org/10.1016/j.matpr.2019.06.705.CrossRefGoogle Scholar
  10. 10.
    Osman AI, Abdelkader A, Farrell C, Rooney D, Morgan K. Reusing, recycling and up-cycling of biomass: a review of practical and kinetic modelling approaches. Fuel Process Technol. 2019;192:179–202.  https://doi.org/10.1016/j.fuproc.2019.04.026.CrossRefGoogle Scholar
  11. 11.
    Janković B. Thermal characterization and detailed kinetic analysis of Cassava starch thermo-oxidative degradation. Carbohydr Polym. 2013;95:621–9.CrossRefGoogle Scholar
  12. 12.
    Monika Katiyar V. Non-isothermal degradation kinetics of PLA-functionalized gum (fG) biocomposite with dicumyl peroxide (DCP). J Therm Anal Calorim. 2019;138:195–210.  https://doi.org/10.1007/s10973-019-08231-7.CrossRefGoogle Scholar
  13. 13.
    Alavi SE, Abdoli MA, Khorasheh F, Bayandori Moghaddam A. Non-isothermal pyrolysis of used lubricating oil and the catalytic effect of carbon-based nanomaterials on the process performance. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08436-w.CrossRefGoogle Scholar
  14. 14.
    Šimková L, Šulcová P. Characterization and thermal behavior of hydroxyapatite prepared by precipitation. J Therm Anal Calorim. 2019;138:321–9.  https://doi.org/10.1007/s10973-019-08144-5.CrossRefGoogle Scholar
  15. 15.
    Bűcs G, Nőt LG, Dandé Kereskai L, Lőrinczy D. Calorimetric examination of hip pseudo-capsule after secondary hip surgeries. J Therm Anal Calorim. 2019;5:397–400.CrossRefGoogle Scholar
  16. 16.
    Arenas CN, Navarro MV, Martínez JD. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Bioresour Technol. 2019;288:121485.  https://doi.org/10.1016/j.biortech.2019.121485.CrossRefPubMedGoogle Scholar
  17. 17.
    Pinto MB, Samanamud GRL, Baston EP, França AB, Naves LLR, Loures CCA, et al. Multivariate and multiobjective optimization of tannery industry effluent treatment using Musa sp flower extract in the coagulation and flocculation process. J Clean Prod. 2019;219:655–66.  https://doi.org/10.1016/j.jclepro.2019.02.060.CrossRefGoogle Scholar
  18. 18.
    Loures CCA, Amaral MS, Da Rós PCM, Zorn SMFE, de Castro HF, Silva MB. Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: a comparison between homogeneous and heterogeneous catalysts. Fuel. 2018;211:261–8.CrossRefGoogle Scholar
  19. 19.
    Shankar BL, Nagaraj PM, Anil KC. Optimization of wear behaviour of AA8011-Gr composite using Taguchi technique. Mater Today Proc. 2017;4:10739–45.  https://doi.org/10.1016/j.matpr.2017.08.021.CrossRefGoogle Scholar
  20. 20.
    Reis C, Loures C, Castro H, Rós P, Santos J, Filho H, et al. Microalgae assisted bioremediation of landfill leachate using a biocoil reactor: evaluation of operational conditions using taguchi experimental design. Br J Environ Clim Chang. 2016;6:299–308.CrossRefGoogle Scholar
  21. 21.
    Azizi K, Keshavarz Moraveji M, Abedini Najafabadi H. A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev. 2018;82:3046–59.  https://doi.org/10.1016/j.rser.2017.10.033.CrossRefGoogle Scholar
  22. 22.
    Liu G, Liao Y, Wu Y, Ma X, Chen L. Characteristics of microalgae gasification through chemical looping in the presence of steam. Int J Hydrogen Energy. 2017;42:22730–42.  https://doi.org/10.1016/j.ijhydene.2017.07.173.CrossRefGoogle Scholar
  23. 23.
    Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ. An overview of the organic and inorganic phase composition of biomass. Fuel. 2012;94:1–33.  https://doi.org/10.1016/j.fuel.2011.09.030.CrossRefGoogle Scholar
  24. 24.
    González WA, Pérez JF, Chapela S, Porteiro J. Numerical analysis of wood biomass packing factor in a fixed-bed gasification process. Renew Energy. 2018;121:579–89.CrossRefGoogle Scholar
  25. 25.
    Aguado R, Saldarriaga JF, Atxutegi A, Bilbao J, Olazar M. Influence of the kinetic scheme and heat balance on the modelling of biomass combustion in a conical spouted bed. Energy. 2019;175:758–67.  https://doi.org/10.1016/j.energy.2019.03.086.CrossRefGoogle Scholar
  26. 26.
    Wang S, Uzoejinwa BB, Abomohra AEF, Wang Q, He Z, Feng Y, et al. Characterization and pyrolysis behavior of the green microalga Micractinium conductrix grown in lab-scale tubular photobioreactor using Py-GC/MS and TGA/MS. J Anal Appl Pyrolysis. 2018;135:340–9.  https://doi.org/10.1016/j.jaap.2018.08.019.CrossRefGoogle Scholar
  27. 27.
    White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33.  https://doi.org/10.1016/j.jaap.2011.01.004.CrossRefGoogle Scholar
  28. 28.
    Zanatta ER, Reinehr TO, Awadallak JA, Kleinübing SJ, dos Santos JBO, Bariccatti RA, et al. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45.CrossRefGoogle Scholar
  29. 29.
    Edreis EMA, Yao H. Kinetic thermal behaviour and evaluation of physical structure of sugar cane bagasse char during non-isothermal steam gasification. J Mater Res Technol. 2016;5:317–26.  https://doi.org/10.1016/j.jmrt.2016.03.006.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Cintia de Faria Ferreira Carraro
    • 1
    • 2
    Email author
  • Carla Cristina de Almeida Loures
    • 2
  • Leonardo Martins da Silva
    • 1
  • Jose Adilson de Castro
    • 1
  1. 1.Graduate Program on Metallurgical EngineeringFederal Fluminense UniversityVolta Redonda, Rio de JaneiroBrazil
  2. 2.Celso Suckow da Fonseca Federal Center of Technological Education – CEFET/RJCampus Angra dos ReisBrazil

Personalised recommendations