Advertisement

Characterization and modelling of density, thermal conductivity, and viscosity of TiN–W/EG nanofluids

  • Suleiman Akilu
  • Aklilu Tesfamichael Baheta
  • K. V. SharmaEmail author
Article
  • 18 Downloads

Abstract

Thermal conductivity, dynamic viscosity, and density of TiN nanofluids (NFs) with different base mediums have been characterized for the prospect of developing new thermophysical property correlations in this work. Characterizations of morphology and crystal structure of nanopowder were made using scanning electron microspore and X-ray diffractometer. Set of NFs was prepared in a base liquid mixture of water–ethylene glycol W/EG 60:40 and 40:60 by an ultrasound-assisted two-step method. Meter Group KD 2 Pro analyzer operated on transient line heat source method was used for the thermal conductivity test. The viscosity and density of NFs were measured with Anton Paar rotational rheometer MCR 302 and oscillating densimeter DMA 4500M. All experiments were implemented for volume fractions of NF between 0.25 and 1.0 vol% in the temperatures range of 293.15–333.15 K. The findings indicate that density and viscosity decrease with increasing temperature, whereas the thermal conductivity of nanofluids is enhanced depending on NP concentration. The W/EG 60:40 base mixture exhibited higher thermal conductivity enhancement and 40:60 base mixture had greater viscosity growth among all analyzed NFs. Moreover, the difference in base fluid fractions does not lead to a significant variance in the density ratios of NFs. Empirical correlations developed for examined properties with effects of particle concentration, temperature, and base liquid ratio are capable of accurately reproducing the properties data within 15% deviation.

Graphic abstract

Keywords

Titanium nitride nanofluid Density Thermal conductivity Viscosity Correlation 

List of symbols

D

Diamond

EG

Ethylene glycol

G

Glycerol

h

Liquid layer thickness

k

Thermal conductivity (W m K−1)

KB

Boltzmann constant

MW

Molecular weight

p

Pressure (Pa)

Q

Volumetric flow rate (m3 s−1)

r

Radius

Re

Reynolds number

TiN

Titanium nitride

W

Water

T

Temperature (K)

vol

Volume

VB

Brownian velocity

mass

Mass

Greek symbols

η

Dynamic viscosity (mPa s)

φ

Fraction (−)

ϕe

Effective volume fraction

ρ

Density (kg m−3)

ζ

Zeta potential (mV)

Subscripts

bf

Base fluid

nf

Nanofluid

p

Particle

r

Relative

Notes

Acknowledgements

This work was supported jointly by the Universiti Teknologi PETRONAS (UTP) and Ministry of Higher Education Malaysia Grant [0153AB-K01].

Reference

  1. 1.
    Maxwell JC. Treatise on electricity and magnetism. 2nd ed. Oxford: Clarendon Press; 1881.  https://doi.org/10.1017/cbo9780511709333.002.CrossRefGoogle Scholar
  2. 2.
    Satti JR, Das DK, Ray D. Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations. Int J Heat Mass Transf. 2017;107:871–81.  https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.121.CrossRefGoogle Scholar
  3. 3.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-newtonian flows. In: Singer DA, Wang HP, editos. New York: American Society of Mechanical Engineers, FED–231/MD-66, 1995, pp. 99–105.Google Scholar
  4. 4.
    Akilu S, Baheta AT, Minea AA, Sharma KV. Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluid. Int Commun Heat Mass Transf. 2017;88:245–53.  https://doi.org/10.1016/j.icheatmasstransfer.2017.08.001.CrossRefGoogle Scholar
  5. 5.
    Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys Rep. 2019;790:1–48.  https://doi.org/10.1016/j.physrep.2018.11.004.CrossRefGoogle Scholar
  6. 6.
    Asadi A, Aberoumand S, Moradikazerouni A, Pourfattah F, Żyła G, Estellé P, et al. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids: A state-of-the-art review. Powder Technol. 2019;352:209–26.  https://doi.org/10.1016/j.powtec.2019.04.054.CrossRefGoogle Scholar
  7. 7.
    Akilu S, Sharma KV, Baheta AT, Mamat R. A review of thermophysical properties of water based composite nanofluids. Renew Sustain Energy Rev. 2016;66:654–78.  https://doi.org/10.1016/j.rser.2016.08.036.CrossRefGoogle Scholar
  8. 8.
    Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52(21):4675–82.  https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027.CrossRefGoogle Scholar
  9. 9.
    Esfe MH, Afrand M, Karimipour A, Yan W-M, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transfer. 2015;67:173–5.  https://doi.org/10.1016/j.icheatmasstransfer.2015.07.009.CrossRefGoogle Scholar
  10. 10.
    Jiang W, Li S, Yang L, Du K. Experimental investigation on performance of ammonia absorption refrigeration system with TiO2 nanofluid. Int J Refrig. 2019;98:80–8.  https://doi.org/10.1016/j.ijrefrig.2018.09.032.CrossRefGoogle Scholar
  11. 11.
    Kulkarni DP, Namburu PK, Ed Bargar H, Das DK. Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transf Eng. 2008;29(12):1027–35.  https://doi.org/10.1080/01457630802243055.CrossRefGoogle Scholar
  12. 12.
    Sardarabadi M, Passandideh-Fard M, Zeinali Heris S. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 2014;66:264–72.  https://doi.org/10.1016/j.energy.2014.01.102.CrossRefGoogle Scholar
  13. 13.
    Islam R, Shabani B, Andrews J, Rosengarten G. Experimental investigation of using ZnO nanofluids as coolants in a PEM fuel cell. Int J Hydrogen Energy. 2017;42(30):19272–86.  https://doi.org/10.1016/j.ijhydene.2017.06.087.CrossRefGoogle Scholar
  14. 14.
    Ray DR, Das DK. Superior performance of nanofluids in an automotive radiator. Journal of Thermal Science and Engineering Applications. 2014;6(4):041002.  https://doi.org/10.1115/1.4027302.CrossRefGoogle Scholar
  15. 15.
    Wang Z, Wu Z, Sundén B. Effects of graphene ethylene glycol/water nanofluids on the performance of a brazed plate heat exchanger. J Nanofluids. 2018;7(6):1069–74.  https://doi.org/10.1166/jon.2018.1538.CrossRefGoogle Scholar
  16. 16.
    Yang L, Jiang W, Chen X, Du K. Dynamic characteristics of an environment-friendly refrigerant: Ammonia-water based TiO2 nanofluids. Int J Refrig. 2017;82:366–80.  https://doi.org/10.1016/j.ijrefrig.2017.06.006.CrossRefGoogle Scholar
  17. 17.
    Satti JR, Das DK, Ray DR. Measurements of Densities of Propylene Glycol-Based Nanofluids and Comparison with Theory. Journal of Thermal Science and Engineering Applications. 2016;8(2):021021.  https://doi.org/10.1115/1.4032671.CrossRefGoogle Scholar
  18. 18.
    Ijam A, Saidur R, Ganesan P, Moradi Golsheikh A. Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int J Heat Mass Transf. 2015;87:92–103.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.060.CrossRefGoogle Scholar
  19. 19.
    Amiri A, Sadri R, Shanbedi M, Ahmadi G, Kazi SN, Chew BT, et al. Synthesis of ethylene glycol-treated Graphene Nanoplatelets with one-pot, microwave-assisted functionalization for use as a high performance engine coolant. Energy Convers Manag. 2015;101:767–77.  https://doi.org/10.1016/j.enconman.2015.06.019.CrossRefGoogle Scholar
  20. 20.
    Cabaleiro D, Colla L, Barison S, Lugo L, Fedele L, Bobbo SJNRL. Heat transfer capability of (ethylene glycol + water)-based nanofluids containing graphene nanoplatelets: design and thermophysical profile. Nanoscale Res Lett. 2017;12(1):53.  https://doi.org/10.1186/s11671-016-1806-x.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cabaleiro D, Pastoriza-Gallego MJ, Piñeiro MM, Lugo L. Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol + water) mixture. J Chem Thermodyn. 2013;58:405–15.  https://doi.org/10.1016/j.jct.2012.10.014.CrossRefGoogle Scholar
  22. 22.
    Pastoriza-Gallego M, Casanova C, Páramo R, Barbés B, Legido J, Piñeiro M. A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. J Appl Phys. 2009;106(6):064301.  https://doi.org/10.1063/1.3187732.CrossRefGoogle Scholar
  23. 23.
    Moldoveanu GM, Minea AA, Iacob M, Ibanescu C, Danu M. Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim Acta. 2018;659:203–12.  https://doi.org/10.1016/j.tca.2017.12.008.CrossRefGoogle Scholar
  24. 24.
    Żyła G, Fal J. Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids. Thermochim Acta. 2016;637:11–6.  https://doi.org/10.1016/j.tca.2016.05.006.CrossRefGoogle Scholar
  25. 25.
    Żyła G. Thermophysical properties of ethylene glycol-based yttrium aluminum garnet (Y3Al5O12–EG) nanofluids. Int J Heat Mass Transf. 2016;92:751–6.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.045.CrossRefGoogle Scholar
  26. 26.
    Żyła G, Fal J. Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: An experimental studies. Thermochim Acta. 2017;650:106–13.  https://doi.org/10.1016/j.tca.2017.02.001.CrossRefGoogle Scholar
  27. 27.
    Chiam H, Azmi W, Usri N, Mamat R, Adam N. Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture. Exp Thermal Fluid Sci. 2017;81:420–9.  https://doi.org/10.1016/j.expthermflusci.2016.09.013.CrossRefGoogle Scholar
  28. 28.
    Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2018;135(1):271–81.  https://doi.org/10.1007/s10973-018-7035-z.CrossRefGoogle Scholar
  29. 29.
    Timofeeva EV, Yu W, France DM, Singh D, Routbort JL. Base fluid and temperature effects on the heat transfer characteristics of SiC in ethylene glycol/H2O and H2O nanofluids. J Appl Phys. 2011;109(1):014914.  https://doi.org/10.1063/1.3524274.CrossRefGoogle Scholar
  30. 30.
    Nikkam N, Toprak MS. Fabrication and thermo-physical characterization of silver nanofluids: An experimental investigation on the effect of base liquid. Int Commun Heat Mass Transfer. 2018;91:196–200.  https://doi.org/10.1016/j.icheatmasstransfer.2017.12.017.CrossRefGoogle Scholar
  31. 31.
    Azmi WH, Abdul Hamid K, Mamat R, Sharma KV, Mohamad MS. Effects of working temperature on thermo-physical properties and forced convection heat transfer of TiO2 nanofluids in water – Ethylene glycol mixture. Appl Therm Eng. 2016;106:1190–9.  https://doi.org/10.1016/j.applthermaleng.2016.06.106.CrossRefGoogle Scholar
  32. 32.
    Sundar LS, Singh MK, Sousa ACM. Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid. Int Commun Heat Mass Transfer. 2013;49:17–24.  https://doi.org/10.1016/j.icheatmasstransfer.2013.08.026.CrossRefGoogle Scholar
  33. 33.
    Żyła G, Fal J, Estellé P. Thermophysical and dielectric profiles of ethylene glycol based titanium nitride (TiN–EG) nanofluids with various size of particles. Int J Heat Mass Transf. 2017;113:1189–99.  https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.032.CrossRefGoogle Scholar
  34. 34.
    Zhang J, Duan L, Jiang D, Lin Q, Iwasa M. Dispersion of TiN in aqueous media. J Colloid Interface Sci. 2005;286(1):209–15.  https://doi.org/10.1016/j.jcis.2005.01.009.CrossRefPubMedGoogle Scholar
  35. 35.
    Asadi A, Pourfattah F, Miklós Szilágyi I, Afrand M, Żyła G, Seon Ahn H, et al. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: a comprehensive review. Ultrasonics. 2019;58:104701.  https://doi.org/10.1016/j.ultsonch.2019.104701.CrossRefGoogle Scholar
  36. 36.
    Lei D, Yang T, Qu B, Ma J, Li Q, Chen L, et al. Synthesis of TiN@ C nanocomposites for enhanced electrochemical properties. Sustain Energy. 2014;2(1):1–4.  https://doi.org/10.12691/rse-2-1-1.CrossRefGoogle Scholar
  37. 37.
    Moosavi M, Goharshadi EK, Youssefi A. Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Fluid Flow. 2010;31(4):599–605.  https://doi.org/10.1016/j.ijheatfluidflow.2010.01.011.CrossRefGoogle Scholar
  38. 38.
    Handbook AF. American society of heating, refrigerating and air-conditioning engineers. Atlanta: Inc; 2009. p. 31.1–31.13.Google Scholar
  39. 39.
    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal. 1998;11(2):151–70.  https://doi.org/10.1080/08916159808946559.CrossRefGoogle Scholar
  40. 40.
    Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12(3):1015–31.  https://doi.org/10.1007/s11051-009-9658-2.CrossRefGoogle Scholar
  41. 41.
    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.  https://doi.org/10.1016/j.enconman.2010.06.072.CrossRefGoogle Scholar
  42. 42.
    Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys. 2009;42(5):055501.  https://doi.org/10.1088/0022-3727/42/5/055501.CrossRefGoogle Scholar
  43. 43.
    Avsec J, Oblak M. The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int J Heat Mass Transf. 2007;50(21–22):4331–41.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064.CrossRefGoogle Scholar
  44. 44.
    Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125(1):527–35.  https://doi.org/10.1007/s10973-016-5436-4.CrossRefGoogle Scholar
  45. 45.
    Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.  https://doi.org/10.1016/j.ijthermalsci.2004.12.005.CrossRefGoogle Scholar
  46. 46.
    Das P, Islam N, Santra A, Ganguly R. Experimental investigation of thermophysical properties of Al2O3–water nanofluid: role of surfactants. J Mol Liq. 2017.  https://doi.org/10.1016/j.molliq.2017.04.099.CrossRefGoogle Scholar
  47. 47.
    Akilu S, Baheta AT, Kadirgama K, Padmanabhan E, Sharma KV. Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluid. J Mol Liq. 2019.  https://doi.org/10.1016/j.molliq.2019.03.159.CrossRefGoogle Scholar
  48. 48.
    Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR. Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E. 2010;81(1):011406.  https://doi.org/10.1103/physreve.81.011406.CrossRefGoogle Scholar
  49. 49.
    Li L, Zhang Y, Ma H, Yang M. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanopart Res. 2010;12(3):811–21.  https://doi.org/10.1007/s11051-009-9728-5.CrossRefGoogle Scholar
  50. 50.
    Cardellini A, Fasano M, Bigdeli MB, Chiavazzo E, Asinari P. Thermal transport phenomena in nanoparticle suspensions. J Phys: Condens Matter. 2016;28(48):483003.  https://doi.org/10.1088/0953-8984/28/48/483003.CrossRefGoogle Scholar
  51. 51.
    Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132(2):1001–15.  https://doi.org/10.1007/s10973-018-7009-1.CrossRefGoogle Scholar
  52. 52.
    Sundar LS, Ramana EV, Singh MK, Sousa AC. Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture of Al2O3 nanofluids for heat transfer applications: An experimental study. Int Commun Heat Mass Transfer. 2014;56:86–95.  https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009.CrossRefGoogle Scholar
  53. 53.
    Manikandan S, Shylaja A, Rajan K. Thermo-physical properties of engineered dispersions of nano-sand in propylene glycol. Colloids Surf, A. 2014;449:8–18.  https://doi.org/10.1016/j.colsurfa.2014.02.040.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversiti Teknologi PETRONASBandar Seri Iskandar, TronohMalaysia
  2. 2.Department of Mechanical Engineering, Center for Energy StudiesJNTUH College of EngineeringKukatpally, HyderabadIndia

Personalised recommendations