Advertisement

Factors influencing the thermal stability of azo and bisazo compounds

  • Masoud Kazem-RostamiEmail author
Article
  • 27 Downloads

Abstract

The present study investigates the effects of substituents, structural rigidity, tautomerism, hydrogen bonding interaction, and spatial hindrance on the thermal stability of some azo compounds including bisazo Tröger base analogs (BATBAs). The relatively large structures of BATBAs allow assessing their thermal stability before reaching the sublimation or boiling point. BATBAs carry two identical azo groups per molecule resulting in an intense and detectable sign of decomposition. Unlike most azo dyes, BATBAs are not ionic and prevent the complexity of decomposition associated with simultaneous dehydration. A few commercial azo dyes are also analyzed to evaluate the generality of the conclusion.

Graphic abstract

Keywords

Azo Bisazo Thermal stability Thermal decomposition Thermolysis Tröger base 

Notes

Acknowledgements

Dr Sadegh Faramarzi (University of Minnesota, USA), Mr Masahiro Kouno (Osaka University, Japan), Mr Mark Tran and Mr Tony Wong (Macquarie University, Australia) are appreciated for their invaluable help with computational chemistry, Japanese translation, and access to the thermoanalytical facilities, respectively. The author gratefully acknowledges the Australian Government for providing him with a Research Training Program Scholarship (IPRS-2014004) and Macquarie University for HDR (43010477) and PGRF (2016R2-1672525) funds in 2014–2017.

Supplementary material

10973_2019_8884_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1734 kb)

References

  1. 1.
    Engel PS. Mechanism of the thermal and photochemical decomposition of azoalkanes. Chem. Rev. 1980.  https://doi.org/10.1021/cr60324a001.CrossRefGoogle Scholar
  2. 2.
    Sawaguchi M, Fukuhara T, Yoneda N. Preparation of aromatic fluorides: facile photo-induced fluorinative decomposition of arenediazonium salts and their related compounds using pyridine–nHF. J. Fluor. Chem. 1999.  https://doi.org/10.1016/S0022-1139(99)00039-1.CrossRefGoogle Scholar
  3. 3.
    Badea M, Emandi A, Marinescu D, Cristurean E, Olar R, Braileanu A, Budrugeac P, Segal E. Thermal stability of some azo-derivatives and their complexes. J. Therm. Anal. Calorim. 2003.  https://doi.org/10.1023/A:1024517430630.CrossRefGoogle Scholar
  4. 4.
    Leulescu M, Pălărie I, Moanţă A, Cioateră N, Popescu M, Morîntale E, Văruţ MC, Rotaru P. Brown HT. J. Therm. Anal. Calorim. 2019.  https://doi.org/10.1007/s10973-018-7766-x.CrossRefGoogle Scholar
  5. 5.
    de Jonge J, Dijkstra R, Braun PB. The thermal decomposition of O-hydroxy-diazonium compounds. Recl. Trav. Chim. Pays-Bas. 1949.  https://doi.org/10.1002/recl.19490680506.CrossRefGoogle Scholar
  6. 6.
    Badea M, Olar R, Emandi A. The effect of Er(III) on the thermal behavior of azo (–N = N–) and azomethinic (–CH = N–) chromophores. J. Therm. Anal. Calorim. 2006.  https://doi.org/10.1007/s10973-005-7176-8.CrossRefGoogle Scholar
  7. 7.
    Huizhong C. Recent advances in azo dye degrading enzyme research. Curr. Protein Pept. Sci. 2006.  https://doi.org/10.2174/138920306776359786.CrossRefGoogle Scholar
  8. 8.
    DeTar DF, Ballentine AR. The mechanisms of diazonium salt reactions. II. A redetermination of the rates of the thermal decomposition of six diazonium salts in aqueous solution. J. Am. Chem. Soc. 1956.  https://doi.org/10.1021/ja01597a015.CrossRefGoogle Scholar
  9. 9.
    Zollinger H. Reactivity and stability of arenediazonium ions. Acc. Chem. Res. 1973.  https://doi.org/10.1021/ar50070a002.CrossRefGoogle Scholar
  10. 10.
    DeTar DF, Kosuge T. Mechanisms of diazonium salt reactions. VI. The reactions of diazonium salts with alcohols under acidic conditions; Evidence for hydride transfer. J. Am. Chem. Soc. 1958.  https://doi.org/10.1021/ja01555a044.CrossRefGoogle Scholar
  11. 11.
    Kazem-Rostami M. Facile preparation of Λ-shaped building blocks: hünlich-base derivatization. Synlett. 2017.  https://doi.org/10.1055/s-0036-1588180.CrossRefGoogle Scholar
  12. 12.
    Fortt R, Wootton RCR, de Mello AJ. Continuous-flow generation of anhydrous diazonium species: monolithic microfluidic reactors for the chemistry of unstable intermediates. Org. Process. Res. Dev. 2003.  https://doi.org/10.1021/op025586j.CrossRefGoogle Scholar
  13. 13.
    Phillips DD, Champion WC. An explosion during the preparation of diazoacetonitrile. J. Am. Chem. Soc. 1956.  https://doi.org/10.1021/ja01601a085.CrossRefGoogle Scholar
  14. 14.
    Sandmeyer T. Ueber die ersetzung der amidgruppe durch chlor in den aromatischen substanzen. Ber. Dtsch. Chem. Ges. 1884.  https://doi.org/10.1002/cber.18840170219.CrossRefGoogle Scholar
  15. 15.
    Khazaei A, Kazem-Rostami M, Moosavi-Zare AR, Bayat M, Saednia S. Novel one-pot synthesis of thiophenols from related triazenes under mild conditions. Synlett. 2012.  https://doi.org/10.1055/s-0032-1316557.CrossRefGoogle Scholar
  16. 16.
    Onoue M, Han MR, Ito E, Hara M. Step-wise decomposition process of azobenzene self-assembled monolayers. Surf. Sci. 2006.  https://doi.org/10.1016/j.susc.2006.01.114.CrossRefGoogle Scholar
  17. 17.
    Adenier A, Barré N, Cabet-Deliry E, Chaussé A, Griveau S, Mercier F, Pinson J, Vautrin-Ul C. Study of the spontaneous formation of organic layers on carbon and metal surfaces from diazonium salts. Surf. Sci. 2006.  https://doi.org/10.1016/j.susc.2006.07.061.CrossRefGoogle Scholar
  18. 18.
    Chow E, Müller K-H, Raguse B, Hubble LJ, Sosa-Pintos A, Patel N, Cooper JS. Solvent-induced modulation of the chemical sensing performance of gold nanoparticle film chemiresistors. Sens. Actuators B Chem. 2019.  https://doi.org/10.1016/j.snb.2018.12.128.CrossRefGoogle Scholar
  19. 19.
    Zollinger H. Diazo chemistry I: aromatic and heteroaromatic compounds. 1st ed. Federal Republic of Germany: VCH Verlagsgesellschaft Weinheim; 1994.CrossRefGoogle Scholar
  20. 20.
    Kazem-Rostami M, Moghanian A. Hunlich base derivatives as photo-responsive Λ-shaped hinges. Org. Chem. Front. 2017.  https://doi.org/10.1039/C6QO00653A.CrossRefGoogle Scholar
  21. 21.
    Moelwyn-Hughes E, Johnson P. The kinetics of the decomposition of benzene diazonium chloride in water. Phys. Chem. Chem. Phys. 1940.  https://doi.org/10.1039/TF9403600948.CrossRefGoogle Scholar
  22. 22.
    Kazem-Rostami M. Design and synthesis of Λ-shaped photoswitchable compounds employing Tröger’s base scaffold. Synthesis. 2017.  https://doi.org/10.1055/s-0036-1588913.CrossRefGoogle Scholar
  23. 23.
    Leulescu M, Rotaru A, Pălărie I, Moanţă A, Cioateră N, Popescu M, Morîntale E, Bubulică MV, Florian G, Hărăbor A, Rotaru P. Tartrazine: physical, thermal and biophysical properties of the most widely employed synthetic yellow food-colouring azo dye. J. Therm. Anal. Calorim. 2018.  https://doi.org/10.1007/s10973-018-7663-3.CrossRefGoogle Scholar
  24. 24.
    Khazaei A, Kazem-Rostami M, Zare A, Moosavi-Zare AR, Sadeghpour M, Afkhami A. Synthesis, characterization, and application of a triazene-based polysulfone as a dye adsorbent. J. Appl. Polym. Sci. 2013.  https://doi.org/10.1002/app.39069.CrossRefGoogle Scholar
  25. 25.
    Rotaru A, Moanta A, Sălăgeanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. J. Therm. Anal. Calorim. 2007.  https://doi.org/10.1007/s10973-005-7435-8.CrossRefGoogle Scholar
  26. 26.
    Srzic D, Žinić M, Meić Z, Czira G, Tainás J. Mechanistic study of the decomposition reactions of azobenzene. Org. Mass Spectrom. 1992.  https://doi.org/10.1002/oms.1210271126.CrossRefGoogle Scholar
  27. 27.
    Arabahmadi R. Synthesis, spectral characterization, thermal analysis and electrochemistry properties of Ni(II) complexes derived from azo dyes. J. Therm. Anal. Calorim. 2016.  https://doi.org/10.1007/s10973-015-4859-7.CrossRefGoogle Scholar
  28. 28.
    Wu C-HS, Hammond GS, Wright JM. The mechanism of decomposition of azo compounds. I. 1,1′-azocyanocyclohexane and N-(1-cyanocyclohexyl)-pentamethyleneketenimine. J. Am. Chem. Soc. 1960.  https://doi.org/10.1021/ja01505a025.CrossRefGoogle Scholar
  29. 29.
    Ramsperger HC. The thermal and photochemical decomposition of azo compounds and the problem of reaction rates. Proc. Natl. Acad. Sci. 1927.  https://doi.org/10.1073/pnas.13.12.849.CrossRefPubMedGoogle Scholar
  30. 30.
    Bhatti AS, Dollimore D, Goddard RJ, O’Donnell G. The thermal decomposition of azodicarbonamide. Thermochim. Acta. 1984.  https://doi.org/10.1016/0040-6031(84)87004-5.CrossRefGoogle Scholar
  31. 31.
    Koga G, Koga N. Mechanistic investigations on the thermolysis of azoalkanes. J. Synth. Org. Chem. Jpn. 1979.  https://doi.org/10.5059/yukigoseikyokaishi.37.843.CrossRefGoogle Scholar
  32. 32.
    Liu MT. The thermolysis and photolysis of diazirines. Chem. Soc. Rev. 1982.  https://doi.org/10.1039/CS9821100127.CrossRefGoogle Scholar
  33. 33.
    Fukui M, Orihara H, Yamada Y, Yamamoto N, Ishibashi Y. New phases in the ferroelectric liquid crystal MHPOBC studied by differential scanning calorimetry. Jpn. J. Appl. Phys. 1989;28:849.CrossRefGoogle Scholar
  34. 34.
    Barrall EM, Porter RS, Johnson JF. Specific heats of nematic, smectic, and cholesteric liquid crystals by differential scanning calorimetry. J. Phys. Chem. 1967.  https://doi.org/10.1021/j100863a018.CrossRefGoogle Scholar
  35. 35.
    Steim JM, Tourtellotte ME, Reinert JC, McElhaney RN, Rader RL. Calorimetric evidence for the liquid-crystalline state of lipids in a biomembrane. Proc. Natl. Acad. Sci. 1969;63:104–9.CrossRefGoogle Scholar
  36. 36.
    Sun K, Xiao Z, Lu S, Zajaczkowski W, Pisula W, Hanssen E, White JM, Williamson RM, Subbiah J, Ouyang J, Holmes AB, Wong WWH, Jones DJ. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun. 2015.  https://doi.org/10.1038/ncomms7013.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Flandin F, Buffevant C, Herbage D. A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. BBA Clin. 1984.  https://doi.org/10.1016/0167-4838(84)90010-4.CrossRefGoogle Scholar
  38. 38.
    Paulsson M, Hegg PO, Castberg HB. Thermal stability of whey proteins studied by differential scanning calorimetry. Thermochim. Acta. 1985.  https://doi.org/10.1016/0040-6031(85)85308-9.CrossRefGoogle Scholar
  39. 39.
    Zolfigol MA, Khazaei A, Moosavi-Zare AR, Zare A, Kruger HG, Asgari Z, Khakyzadeh V, Kazem-Rostami M. Design of ionic liquid 3-methyl-1-sulfonic acid imidazolium nitrate as reagent for the nitration of aromatic compounds by in situ generation of NO2 in acidic media. J. Org. Chem. 2012.  https://doi.org/10.1021/jo300137w.CrossRefPubMedGoogle Scholar
  40. 40.
    Khazaei A, Saednia S, Roshani L, Kazem-Rostami M, Zare A. Synthesis, characterization and application of poly (N, N’-dibromo-N-ethylnaphthyl-2,7-disulfonamide) as an efficient catalyst for the acetylation and deacetylation reactions. Lett. Org. Chem. 2014.  https://doi.org/10.2174/15701786113106660085.CrossRefGoogle Scholar
  41. 41.
    Mahmoud WH, Omar MM, Sayed FN. Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azo dye metal complexes. J. Therm. Anal. Calorim. 2016.  https://doi.org/10.1007/s10973-015-5172-1.CrossRefGoogle Scholar
  42. 42.
    Moosavi-Zare AR, Zolfigol MA, Salehi-Moratab R, Noroozizadeh E. Catalytic application of 1-(carboxymethyl)pyridinium iodide on the synthesis of pyranopyrazole derivatives. J. Mol. Catal. A. Chem. 2016.  https://doi.org/10.1016/j.molcata.2016.02.003.CrossRefGoogle Scholar
  43. 43.
    Moosavi-Zare AR, Zolfigol MA, Zarei M, Zare A, Afsar J. Design, characterization and application of silica-bonded imidazolium-sulfonic acid chloride as a novel, active and efficient nanostructured catalyst in the synthesis of hexahydroquinolines. Appl. Catal. A Gen. 2015.  https://doi.org/10.1016/j.apcata.2015.08.004.CrossRefGoogle Scholar
  44. 44.
    Moosavi-Zare AR, Zolfigol MA, Noroozizadeh E, Salehi-Moratab R, Zarei M. Silica-bonded 1,4-diaza-bicyclo [2.2.2] octane-sulfonic acid chloride catalyzed synthesis of spiropyran derivatives. J. Mol. Catal. A Chem. 2016.  https://doi.org/10.1016/j.molcata.2016.04.021.CrossRefGoogle Scholar
  45. 45.
    Moosavi-Zare AR, Zolfigol MA, Noroozizadeh E, Zarei M, Karamian R, Asadbegy M. Synthesis and characterization of acetic acid functionalized poly (4-vinylpyridinium) salt as new catalyst for the synthesis of spiropyran derivatives and their biological activity. J. Mol. Catal. A Chem. 2016.  https://doi.org/10.1016/j.molcata.2016.10.011.CrossRefGoogle Scholar
  46. 46.
    Kazem-Rostami M, Akhmedov NG, Faramarzi S. Molecular lambda shape light-driven dual switches: spectroscopic and computational studies of the photoisomerization of bisazo Tröger base analogs. J. Mol. Struct. 2019.  https://doi.org/10.1016/j.molstruc.2018.10.071.CrossRefGoogle Scholar
  47. 47.
    Kazem-Rostami M. Optically active and photoswitchable Tröger’s base analogs. New J. Chem. 2019.  https://doi.org/10.1039/C9NJ01372E.CrossRefGoogle Scholar
  48. 48.
    Ekhoff JA, Rowlen KL. Effect of interfacial refractive index on optical molecular orientation measurements. Anal. Chem. 2002.  https://doi.org/10.1021/ac020477o.CrossRefPubMedGoogle Scholar
  49. 49.
    Brode WR, Seldin IL, Spoerri PE, Wyman GM. The relation between the absorption spectra and the chemical constitution of dyes. XXVIII. The hydration of azo dyes in organic solvents. J. Am. Chem. Soc. 1955.  https://doi.org/10.1021/ja01615a028.CrossRefGoogle Scholar
  50. 50.
    Fones WS, White J. Preparation of p-dimethylaminoazobenzene containing isotopic nitrogen. Arch. Biochem. 1949;20:118–24.PubMedGoogle Scholar
  51. 51.
    Sekhri L, Bebba AA, Hassini Z. Synthesis, applications and comparison of some phosphine oxides and their salts with the nitrogen containing compounds. Asian J. Chem. 2005;17:2455–62.Google Scholar
  52. 52.
    Gültekin I, Ince NH. Degradation of aryl-azo-naphthol dyes by ultrasound, ozone and their combination: effect of α-substituents. Ultrason. Sonochem. 2006.  https://doi.org/10.1016/j.ultsonch.2005.03.002.CrossRefPubMedGoogle Scholar
  53. 53.
    Kocaokutgen H, Gümrükçüoğlu I. Thermal characterization of some azo dyes containing intermolecular hydrogen bonds and non-bonds. J. Therm. Anal. Calorim. 2003.  https://doi.org/10.1023/A:1022888817658.CrossRefGoogle Scholar
  54. 54.
    Hou M, Li F, Liu X, Wang X, Wan H. The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J. Hazard. Mater. 2007.  https://doi.org/10.1016/j.jhazmat.2006.11.019.CrossRefPubMedGoogle Scholar
  55. 55.
    Yang Y, Tsai Y-T. Evaluation on thermal stability and kinetics of 2,2′-azobis(2,4-dimethyl)valeronitrile in aerobic and anaerobic conditions under isothermal process. J. Therm. Anal. Calorim. 2018.  https://doi.org/10.1007/s10973-018-6980-x.CrossRefGoogle Scholar
  56. 56.
    Ogihara A, Nagai Y. Effect of substituents on the thermal stability of azo compounds. Kogyo Kagaku Zasshi. 1959;62:897–8.CrossRefGoogle Scholar
  57. 57.
    Kocaokutgen H, Heren Z. Thermal behaviour of some azo dyes containing sterically hindered and water-soluble groups. Turk. J. Chem. 1998;22:403–8.Google Scholar
  58. 58.
    Zayed M, Mohamed GG, Fahmey M. Thermal and mass spectral characterization of novel azo dyes of p-acetoamidophenol in comparison with Hammett substituent effects and molecular orbital calculations. J. Therm. Anal. Calorim. 2012.  https://doi.org/10.1007/s10973-011-1515-8.CrossRefGoogle Scholar
  59. 59.
    Alam MZ, Yoshioka T, Ogata T, Nonaka T, Kurihara S. The influence of molecular structure on helical twisting power of chiral azobenzene compounds. Liq. Cryst. 2007.  https://doi.org/10.1080/02678290701658241.CrossRefGoogle Scholar
  60. 60.
    Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S-N, Kurihara S. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Adv. Mater. 2005.  https://doi.org/10.1002/adma.200401429.CrossRefGoogle Scholar
  61. 61.
    Moanţă A, Ionescu C, Rotaru P, Socaciu M, Hărăbor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl)oxy]-3,4′-dichloroazobenzene. J. Therm. Anal. Calorim. 2010.  https://doi.org/10.1007/s10973-010-0899-1.CrossRefGoogle Scholar
  62. 62.
    Rotaru A, Dumitru M. Thermal behaviour of CODA azoic dye liquid crystal and nanostructuring by drop cast and spin coating techniques. J. Therm. Anal. Calorim. 2017.  https://doi.org/10.1007/s10973-016-5599-z.CrossRefGoogle Scholar
  63. 63.
    Rotaru A, Moanţă A, Constantinescu C, Dumitru M, Manolea HO, Andrei A, Dinescu M. Thermokinetic study of CODA azoic liquid crystal and thin films deposition by matrix-assisted pulsed laser evaporation. J. Therm. Anal. Calorim. 2017.  https://doi.org/10.1007/s10973-016-5895-7.CrossRefGoogle Scholar
  64. 64.
    Ungar G, Feijoo J. Simultaneous x-ray diffraction and differential scanning calorimetry (XDDSC) in studies of molecular and liquid crystals. Mol. Cryst. Liq. Cryst. 1990.  https://doi.org/10.1080/00268949008042209.CrossRefGoogle Scholar
  65. 65.
    Savateev A, Dontsova D, Kurpil B, Antonietti M. Highly crystalline poly(heptazine imides) by mechanochemical synthesis for photooxidation of various organic substrates using an intriguing electron acceptor–Elemental sulfur. J. Catal. 2017.  https://doi.org/10.1016/j.jcat.2017.02.029.CrossRefGoogle Scholar
  66. 66.
    Petrovic M, Scarpi D, Nieger M, Jung N, Occhiato EG, Bräse S. Oxidation of diazenyl-protected N-heterocycles - a new entry to functionalized lactams. RSC Adv. 2017.  https://doi.org/10.1039/C6RA26546D.CrossRefGoogle Scholar
  67. 67.
    Hafner A, Hussal C, Bräse S. Preparation of aromatic triazenes and their application in silver-mediated perfluoroalkylation reactions. Synthesis. 2014.  https://doi.org/10.1055/s-0033-1341249.CrossRefGoogle Scholar
  68. 68.
    Pilot C, Dahmen S, Lauterwasser F, Bräse S. Cleavage of immobilized disubstituted triazenes with electrophiles: solid-phase synthesis of alkyl halides and esters. Tetrahedron Lett. 2001.  https://doi.org/10.1016/S0040-4039(01)02019-6.CrossRefGoogle Scholar
  69. 69.
    Lormann M, Dahmen S, Bräse S. Hydro-dediazoniation of diazonium salts using trichlorosilane: new cleavage conditions for the T1 traceless linker. Tetrahedron Lett. 2000.  https://doi.org/10.1016/S0040-4039(00)00524-4.CrossRefGoogle Scholar
  70. 70.
    Lazny R, Poplawski J, Kobberling J, Enders D, Bräse S. Triazenes: a useful protecting strategy for sensitive secondary amines. Synlett. 1999.  https://doi.org/10.1055/s-1999-2803.CrossRefGoogle Scholar
  71. 71.
    Cao D, Zhang Y, Liu C, Wang B, Sun Y, Abdukadera A, Hu H, Liu Q. Ionic liquid promoted diazenylation of N-heterocyclic compounds with aryltriazenes under mild conditions. Org. Lett. 2016.  https://doi.org/10.1021/acs.orglett.6b00605.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang Y, Hu H, Liu C-J, Cao D, Wang B, Sun Y, Abdukader A. Highly efficient Brønsted acidic ionic liquid promoted direct diazenylation of pyrazolones with aryltriazenes under mild conditions. Asian J. Org. Chem. 2016.  https://doi.org/10.1002/ajoc.201600475.CrossRefGoogle Scholar
  73. 73.
    Shang X, Xu L, Yang W, Zhou J, Miao M, Ren H. BF3OEt2-Promoted intramolecular nucleophilic substitution; synthesis of dbenzopyranones and coumarins from biaryltriazenes. Eur. J. Org. Chem. 2013.  https://doi.org/10.1002/ejoc.201300660.CrossRefGoogle Scholar
  74. 74.
    Sun H, Huang Y. Recent progress in the development of multitasking directing groups for carbon–hydrogen activation reactions. Synlett. 2015.  https://doi.org/10.1055/s-0035-1560169.CrossRefGoogle Scholar
  75. 75.
    Zhu J, Jin S, Cheng B, Li K, Zeng X, Chen S. Thermal stability assessment of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC). J. Therm. Anal. Calorim. 2018.  https://doi.org/10.1007/s10973-017-6896-x.CrossRefGoogle Scholar
  76. 76.
    Christie RM, Mackay JL. Metal salt azo pigments. Color. Tech. 2008.  https://doi.org/10.1111/j.1478-4408.2008.00133.x.CrossRefGoogle Scholar
  77. 77.
    Gelebart AH, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer EW, Selinger RLB, Broer DJ. Making waves in a photoactive polymer film. Nature. 2017.  https://doi.org/10.1038/nature22987.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Science and EngineeringMacquarie UniversityNorth RydeAustralia

Personalised recommendations