Advertisement

In situ investigation of precipitation in aluminium alloys via thermal diffusivity from laser flash analysis

  • Richard H. Kemsies
  • Benjamin MilkereitEmail author
  • André Lindemann
  • Christoph Schick
  • Olaf Kessler
Article
  • 11 Downloads

Abstract

In this work, a commercially available laser flash analysis (LFA) device is used for in situ precipitation monitoring in aluminium alloys by following thermal diffusivity for the first time. The LFA measurement methods and data processing are adapted to allow continuous heating experiments over a wide range of heating rates (0.001–1 K s−1). Methods for LFA temperature calibration and thermal lag correction are suggested. Results of continuous heating of Al Mn0.5Mg0.5 aluminium alloy from the as-cast state are compared to in situ differential scanning calorimetry (DSC) and ex situ transmission electron microscopy. It is shown comparing in situ LFA, and DSC substantially improves the interpretation of superimposed reactions, in particular, the precipitation and dissolution of Mn-containing dispersoids and Mg–Si-containing secondary particles.

Keywords

In situ LFA Thermal diffusivity LFA thermal lag correction DSC Aluminium alloys Precipitation 

Notes

Acknowledgements

The authors gratefully acknowledge Hydro Aluminium R&D, Bonn, Germany, for providing the material used in this study. This work was supported by the German Federal Ministry of Education and Research (BMBF) (Project 03EK3538A). CS acknowledge financial support from the Ministry of Education and Science of the Russian Federation, Grant 14.Y26.31.0019.

References

  1. 1.
    Osten J, Milkereit B, Schick C, Kessler O. Dissolution and precipitation behaviour during continuous heating of Al–Mg–Si alloys in a wide range of heating rates. Materials. 2015;8:2830–48.  https://doi.org/10.3390/ma8052830.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Birol Y. A calorimetric analysis of the precipitation reactions in AlSi1MgMn alloy with Cu additions. Thermochim Acta. 2017;650:39–43.  https://doi.org/10.1016/j.tca.2017.02.004.CrossRefGoogle Scholar
  3. 3.
    Starink MJ. Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int Mater Rev. 2004;49:191–226.  https://doi.org/10.1179/095066004225010532.CrossRefGoogle Scholar
  4. 4.
    Li PY, Xiong BQ, Zhang YA, Li ZH, Zhu BH, Wang F, Liu HW. Quench sensitivity and microstructure character of high strength AA7050. Trans Nonferr Met Soc China. 2012;22:268–74.  https://doi.org/10.1016/s1003-6326(11)61170-9.CrossRefGoogle Scholar
  5. 5.
    Li SL, Huang ZQ, Chen WP, Liu ZM, Qi WJ. Quench sensitivity of 6351 aluminum alloy. Trans Nonferr Met Soc China. 2013;23:46–52.CrossRefGoogle Scholar
  6. 6.
    Li Y, Arnberg L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 2003;51:3415–28.  https://doi.org/10.1016/S1359-6454(03)00160-5.CrossRefGoogle Scholar
  7. 7.
    Huang K, Wang N, Li Y, Marthinsen K. The influence of microchemistry on the softening behaviour of two cold-rolled Al–Mn–Fe–Si alloys. Mater Sci Eng, A. 2014;601:86–96.  https://doi.org/10.1016/j.msea.2014.02.037.CrossRefGoogle Scholar
  8. 8.
    Li HY, Geng JF, Zheng ZQ, Wang JQ, Su Y, Hu B. Continuous cooling transformation curve of a novel Al–Cu–Li alloy. Trans Nonferr Met Soc China. 2006;16:1110–5.  https://doi.org/10.1016/S1003-6326(06)60386-5.CrossRefGoogle Scholar
  9. 9.
    Li HY, Bin J, Zhao YK, Wang XF. Establishment of continuous cooling transformation diagrams of aluminum alloys using in situ voltage measurement. Trans Nonferr Met Soc China. 2011;21:1944–9.  https://doi.org/10.1016/S1003-6326(11)60954-0.CrossRefGoogle Scholar
  10. 10.
    Esmaeili S, Poole WJ, Lloyd DJ. Electrical resistivity studies on the precipitation behaviour of AA6111. Mater Sci Forum. 2000;331–337:995–1000.CrossRefGoogle Scholar
  11. 11.
    Chobaut N, Carron D, Drezet JM. Monitoring precipitation kinetics in heat treatable aluminium alloys using in situ resistivity in gleeble thermomechanical simulator. Mater Sci Forum. 2014;794–796:921–5.  https://doi.org/10.4028/www.scientific.net/MSF.794-796.921.CrossRefGoogle Scholar
  12. 12.
    Archambault P, Godard D. High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in situ electrical resistivity measurements and differential calorimetry. Scr Mater. 2000;42:675–80.CrossRefGoogle Scholar
  13. 13.
    Huang K, Li Y, Marthinsen K. Effect of heterogeneously distributed pre-existing dispersoids on the recrystallization behavior of a cold-rolled Al–Mn–Fe–Si alloy. Mater Charact. 2015;102:92–7.  https://doi.org/10.1016/j.matchar.2015.02.015.CrossRefGoogle Scholar
  14. 14.
    Polmear IJ. Light alloys: from traditional alloys to nanocrystals. 4th ed. Amsterdam: Elsevier Butterworth-Heinemann; 2006.Google Scholar
  15. 15.
    Kemsies RH, Milkereit B, Wenner S, Holmestad R, Kessler O. In situ DSC investigation into the kinetics and microstructure of dispersoid formation in Al–Mn–Fe–Si(–Mg) alloys. Mater Des. 2018;146:96–107.  https://doi.org/10.1016/j.matdes.2018.03.007.CrossRefGoogle Scholar
  16. 16.
    Ólafsson P, Sandström R, Karlsson Å. Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J Mater Sci. 1997;32:4383–90.  https://doi.org/10.1023/A:1018680024876.CrossRefGoogle Scholar
  17. 17.
    Franz R, Wiedemann G. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann Phys. 1853;165:497–531.CrossRefGoogle Scholar
  18. 18.
    Perl M, Leitner G. Temperatur-und Wärmeleitfähigkeit im Hochtemperaturbereich. J Therm Anal. 1996;47:643–50.  https://doi.org/10.1007/BF01984006.CrossRefGoogle Scholar
  19. 19.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys. 1961;32:1679.  https://doi.org/10.1063/1.1728417.CrossRefGoogle Scholar
  20. 20.
    Cowan RD. Pulse method of measuring thermal diffusivity at high temperatures. J Appl Phys. 1963;34:926–7.  https://doi.org/10.1063/1.1729564.CrossRefGoogle Scholar
  21. 21.
    Rudkin RL, Jenkins RJ, Parker WJ. Thermal diffusivity measurements on metals at high temperatures. Rev Sci Instrum. 1962;33:21–4.  https://doi.org/10.1063/1.1717653.CrossRefGoogle Scholar
  22. 22.
    Blumm J, Lemarchand SS, Henderson JB. A new method for the temperature calibration of laser flash systems. In: Dinwiddie RB, editor. Thermal Conductivity 26: Thermal Expansion 14 : Joint Conferences, August 6–8, 2001, Cambridge, Massachusetts, USA. Lancaster: DEStech; 2005. p. 19–25. ISBN 1-932078-36-3.Google Scholar
  23. 23.
    Höhne GWH, Cammenga HK, Eysel W, Gmelin E, Hemminger W. The temperature calibration of scanning calorimeters. Thermochim Acta. 1990;160:1–12.  https://doi.org/10.1016/0040-6031(90)80235-Q.CrossRefGoogle Scholar
  24. 24.
    Cornish L. Assessed Al-In equilibrium diagram: Datasheet from MSI Eureka in SpringerMaterials. In: Effenberg G, editor. Stuttgart: MSI, Materials Science International Services GmbH; 2004.Google Scholar
  25. 25.
    Preston-Thomas H. The international temperature scale of 1990 (ITS-90). Metrologia. 1990;27:3–10.  https://doi.org/10.1088/0026-1394/27/1/002.CrossRefGoogle Scholar
  26. 26.
    Preston-Thomas H, Comité International des Poids et Mesures. The international practical temperature scale of 1968: amended edition of 1975. Metrologia. 1976;12:7–17.  https://doi.org/10.1088/0026-1394/12/1/003.CrossRefGoogle Scholar
  27. 27.
    Okamoto H. Al–Pb (aluminum–lead). J Phase Equilib. 2001;22:509.  https://doi.org/10.1361/105497101770338581.CrossRefGoogle Scholar
  28. 28.
    Predel B. Al–Sn (aluminum–tin). In: Hellwege K-H, Madelung O, Landolt H, editors. Numerical data AND functional relationships in science and technology: New series. Berlin: Springer; 1991. p. 1–3.  https://doi.org/10.1007/10000866_144.CrossRefGoogle Scholar
  29. 29.
    Min S, Blumm J, Lindemann A. A new laser flash system for measurement of the thermophysical properties. Thermochim Acta. 2007;455:46–9.  https://doi.org/10.1016/j.tca.2006.11.026.CrossRefGoogle Scholar
  30. 30.
    Schumacher P, Pogatscher S, Starink MJ, Schick C, Mohles V, Milkereit B. Quench-induced precipitates in Al–Si alloys: calorimetric determination of solute content and characterisation of microstructure. Thermochim Acta. 2015;602:63–73.  https://doi.org/10.1016/j.tca.2014.12.023.CrossRefGoogle Scholar
  31. 31.
    Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 1964;36:1627–39.  https://doi.org/10.1021/ac60214a047.CrossRefGoogle Scholar
  32. 32.
    Tritt TM. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic Publishers; 2004.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Chair of Materials Science, Faculty of Mechanical Engineering and Marine TechnologyUniversity of RostockRostockGermany
  2. 2.Competence Centre °CALOR, Department Life, Light and Matter, Faculty of Interdisciplinary ResearchUniversity of RostockRostockGermany
  3. 3.Netzsch Gerätebau GmbHSelbGermany
  4. 4.Institute of Physics, University of RostockRostockGermany
  5. 5.Kazan Federal UniversityKazanRussian Federation

Personalised recommendations