Advertisement

Experimental investigation of circular flat-panel collector performance with spiral pipes

  • Mojtaba Moravej
  • Mohammad Reza Saffarian
  • Larry K. B. Li
  • Mohammad Hossien Doranehgard
  • Qingang XiongEmail author
Article
  • 29 Downloads

Abstract

The performance of solar water heaters can be enhanced via a number of different methods. One such method involves altering the geometry of the collector. In this study, a symmetrical flat-panel solar collector with circular geometry has been experimentally evaluated. The collector has an area of one square meter, is free of risers and features spiral tubes that flow into the collector from the side and exit from the center. The collector was tested according to ASHRAE standards in Aghajari, southern Iran. The experiments focused on quantifying the efficiency and thermal performance of the collector at various conditions, such as different water flow rates and solar radiation. The results show that, like other flat-panel collectors, the collector efficiency increases with increase in water flow rate and solar radiation. The efficiency increase in this collector is higher than that of rectangular collectors owing to the presence of secondary currents. Furthermore, the maximum efficiency of this collector is around 75.3%, with a maximum temperature difference between the inlet and outlet of around 19 °C. This study offers a simple way to improve the performance of solar water heaters.

Keywords

Experimental investigation Solar collector Efficiency 

Notes

References

  1. 1.
    Rashidi S, Kashefi MH, Hormozi F. Potential applications of inserts in solar thermal energy systems—a review to identify the gaps and frontier challenges. Sol Energy. 2018;171:929–52.CrossRefGoogle Scholar
  2. 2.
    Rashidi S, Esfahani JA, Rashidi A. A review on the applications of porous materials in solar energy systems. Renew Sustain Energy Rev. 2017;73:1198–210.CrossRefGoogle Scholar
  3. 3.
    Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135(1):551–63.CrossRefGoogle Scholar
  4. 4.
    Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135(2):1145–59.CrossRefGoogle Scholar
  5. 5.
    Rashidi S, Hormozi F, Sundén B, Mahian O. Energy saving in thermal energy systems using dimpled surface technology—a review on mechanisms and applications. Appl Energy. 2019;250:1491–547.CrossRefGoogle Scholar
  6. 6.
    Rashidi S, Kashefi MH, Kim KC, Samimi-Abianeh O. Potentials of porous materials for energy management in heat exchangers—a comprehensive review. Appl Energy. 2019;243:206–32.CrossRefGoogle Scholar
  7. 7.
    Saffarian MR, Moravej M, Doranehgard MH. Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Energy. 2020;146:2316–29.CrossRefGoogle Scholar
  8. 8.
    Bozorg MV, Doranehgard MH, Hong K, Xiong Q. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renew Energy. 2020;145:2598–614.CrossRefGoogle Scholar
  9. 9.
    Xiong Q, Bozorg MV, Doranehgard MH, Hong K, Lorenzini G. A CFD investigation of the effect of non-Newtonian behavior of Cu–water nanofluids on their heat transfer and flow friction characteristics. J Therm Anal Calorim.  https://doi.org/10.1007/s10973-019-08757-w.
  10. 10.
    Asadi A, Zhang Y, Mohammadi H, Khorand H, Rui Z, Doranehgard MH, Bozorg MV. Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: a CFD study. Renew Energy. 2019;138:79–89.CrossRefGoogle Scholar
  11. 11.
    Xiong Q, Khosravi A, Nabipour N, Doranehgard MH, Sabaghmoghadam A, Ross D. Nanofluid flow and heat transfer due to natural convection in a semi-circle/ellipse annulus using modified lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2019.  https://doi.org/10.1108/HFF-03-2019-0273.CrossRefGoogle Scholar
  12. 12.
    Mesbah M, Vatani A, Siavashi M, Doranehgard MH. Parallel processing of numerical simulation of two-phase flow in fractured reservoirs considering the effect of natural flow barriers using the streamline simulation method. Int J Heat Mass Transf. 2019;131:574–83.CrossRefGoogle Scholar
  13. 13.
    Duffie JA, Beckman WA. Solar engineering of thermal processes. 4th ed. New York: Wiley; 2013.CrossRefGoogle Scholar
  14. 14.
    Elsheikh AH, Sharshir SW, Mostafa ME, Essa FA, Ali MKA. Applications of nanofluids in solar energy: a review of recent advances. Renew Sustain Energy Rev. 2018;82:3483–502.CrossRefGoogle Scholar
  15. 15.
    Mahian O, Kianifar A, Sahin AZ, Wongwises S. Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Convers Manag. 2014;88:129–38.CrossRefGoogle Scholar
  16. 16.
    Rajabi Khanghahi A, Zamen M, Soufari M, Amidpour M, Abbas Nejad A. Theoretical investigation of consumption patterns effect on optimal orientation of collector in solar water heating system. J Renew Energy Environ. 2017;4(1):1–10.Google Scholar
  17. 17.
    Abdolzadeh M, Mehrabian MA. The optimal slope angle for solar collectors in hot and dry parts of Iran. Energy Sources A. 2012;34:519–30.CrossRefGoogle Scholar
  18. 18.
    Ayompe LM, Duffy A. Analysis of the thermal performance of a solar water heating system with flat plate collectors in a temperate climate. Appl Therm Eng. 2013;58:447–54.CrossRefGoogle Scholar
  19. 19.
    Chen Z, Furbo S, Perers B, Fan J, Andersen A. Efficiencies of flat plate solar collectors at different flow rates. Energy Procedia. 2012;30:65–72.CrossRefGoogle Scholar
  20. 20.
    Nasrin R, Alim MA. Modeling of a solar water collector with water-based nanofluid using nanoparticles. Heat Transf Asian Res. 2014;43:270–87.CrossRefGoogle Scholar
  21. 21.
    Noghrehabadi A, Hajidavalloo E, Moravej M. Experimental investigation of efficiency of square flat-plate solar collector using SiO2/water nanofluid. Case Stud Therm Eng. 2016;8:378–86.CrossRefGoogle Scholar
  22. 22.
    Noghrehabadi A, Hajidavaloo E, Moravej M, Esmailinasab A. An experimental study of the thermal performance of the square and rhombic solar collectors. Therm Sci. 2018;22(1B):487–94.CrossRefGoogle Scholar
  23. 23.
    Mirzaei M. Experimental investigation of CuO nanofluid in the thermal characteristics of a flat plate solar collector. Environ Prog Sustain Energy. 2019;38(1):260–7.CrossRefGoogle Scholar
  24. 24.
    Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S. An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat plate solar collector. Renew Energy. 2012;39:293–8.CrossRefGoogle Scholar
  25. 25.
    Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S. An experimental investigation on the effect of pH variation of MWCNT–H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy. 2012;86(2):771–9.CrossRefGoogle Scholar
  26. 26.
    Meibodi SS, Kianifar A, Niazmand H, Mahian O, Wongwises S. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG–water nanofluids. Int Commun Heat Mass Transf. 2015;65:71–5.CrossRefGoogle Scholar
  27. 27.
    Noghrehabadi A, Hajidavalloo E, Moravej M. An experimental investigation of performance of a 3-D solar conical collector at different flow rates. J Heat Mass Transf Res. 2016;3(1):57–66.Google Scholar
  28. 28.
    Pelēce I, Iljins U, Ziemelis I. Theoretical calculation of energy received by semi-spherical solar collector. Agron Res. 2008;6:263–9.Google Scholar
  29. 29.
    Faizal M, Saidur R, Mekhilef S, Alim MA. Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Convers Manag. 2013;76:162–8.CrossRefGoogle Scholar
  30. 30.
    Shojaeizadeh E, Veysi F, Kamandi A. Exergy efficiency investigation and optimization of an Al2O3–water nanofluid based Flat-plate solar collector. Energy Build. 2015;101:12–23.CrossRefGoogle Scholar
  31. 31.
    Sharma KV, Sundar LS, Sarma PK. Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. Int Commun Heat Mass Transf. 2009;36(5):503–7.CrossRefGoogle Scholar
  32. 32.
    Jaisankar S, Radhakrishnan TK, Sheeba KN. Experimental studies on heat transfer and friction factor characteristics of forced circulation solar water heater system fitted with helical twisted tapes. Sol Energy. 2009;83(11):1943–52.CrossRefGoogle Scholar
  33. 33.
    ASHRAE Standard 93-86. Methods of testing and determine the thermal performance of solar collectors. ASHRAE, Atlanta; 2003.Google Scholar
  34. 34.
    Gupta HK, Agrawal GD, Mathur J. Investigation for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Sol Energy. 2015;118:390–6.CrossRefGoogle Scholar
  35. 35.
    Ango MD, Medale ACM, Abid C. Optimization of the design of a polymer flat plate solar collector. Solar Energy. 2013;87:64–75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mojtaba Moravej
    • 1
  • Mohammad Reza Saffarian
    • 2
  • Larry K. B. Li
    • 3
  • Mohammad Hossien Doranehgard
    • 4
  • Qingang Xiong
    • 5
    Email author
  1. 1.Department of Mechanical EngineeringPayame Noor UniversityAhvazIran
  2. 2.Department of Mechanical EngineeringShahid Chamran University of AhvazAhvazIran
  3. 3.Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong
  4. 4.School of Mining and Petroleum EngineeringUniversity of AlbertaAlbertaCanada
  5. 5.IT Innovation CenterGeneral MotorsWarrenUSA

Personalised recommendations