Thermomechanical, calorimetric and magnetic properties of a Ni–Ti shape-memory alloy wire

  • G. Florian
  • Augusta Raluca Gabor
  • C. A. Nicolae
  • A. RotaruEmail author
  • N. Stănică
  • N. G. Bîzdoacă
  • P. Rotaru


In this work, some physical properties of a commercial Ni–Ti (nitinol) shape-memory alloy with cylindrical geometry (wire) were investigated; the focus was on the thermomechanical, calorimetric and magnetic characterization. By dynamical mechanical analysis, the range of elasticity, the elasticity–viscoelasticity coexistence domain and the domain in which a maximum force is applied were determined for the SMA wire. By using the temperature-modulated differential scanning calorimetry method, a multi-step temperature variation program was applied to the wire with cylindrical geometry, in two stages (heating–cooling) and through the interpretation of heat fluxes (reversible, nonreversible and total), and the phase transitions in the formation of martensite, austenite and rhombohedral phase (R-phase) were identified and correlated with those observed during the thermomechanical study; also, the formation of austenite and martensite was evidenced by the regular differential scanning calorimetry method; by magnetic measurements, it was established that the SMA wire had magnetic properties at room temperature, and the nitinol sample is paramagnetic and linear in the intensity of the magnetizing magnetic field; these results were compared with those previously obtained for the investigation of the nitinol SMA stripe.


Ni–Ti alloy Dynamic mechanical analysis Temperature-modulated differential scanning calorimetry DSC Nitinol SMA wire Magnetism 



  1. 1.
    Yates S, Kalamkarov A. Experimental study of helical shape memory alloy actuators: effects of design and operating parameters on thermal transients and stroke. Metals. 2013;3(1):123–49.CrossRefGoogle Scholar
  2. 2.
    Berzinsa DW, Roberts HW. Phase transformation changes in thermocycled nickel–titanium orthodontic wires. Dent Mater. 2010;26:666–74.CrossRefGoogle Scholar
  3. 3.
    Buehler WJ, Wiley RC. Nickel-base alloys. United States Patent 3,174,851; March 23, 1965.Google Scholar
  4. 4.
    Buehler WJ, Wiley RC. TiNi-ductile intermetallic compound. Am Soc Met Trans Q. 1962;55:269–76.Google Scholar
  5. 5.
    Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics. J Am Dent Assoc. 1971;82:1373–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Andreasen GF, Morrow RE. Laboratory and clinical analyses of nitinol wire. An evaluation of 55 cobalt substituted nitinol wire for use in orthodontics. Am J Orthod. 1978;73:142–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Degeratu S, Rotaru P, Manolea G, Manolea HO, Rotaru A. Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J Therm Anal Calorim. 2009;97:695–700.CrossRefGoogle Scholar
  8. 8.
    Degeratu S, Rotaru P, Rizescu S, Bı̂zdoacă NG. Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. J Therm Anal Calorim. 2013;111:1255–62.CrossRefGoogle Scholar
  9. 9.
    Segal N, Hell J, Berzins DW. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire. Am J Orthod Dentofac Orthop. 2009;135:764–70.CrossRefGoogle Scholar
  10. 10.
    Liu J-K, Liu I-H, Liu C, Chang C-J, Kung K-C, Liu Y-T, Lee T-M, Jou J-L. Effect of titanium nitride/titanium coatings on the stress corrosion of nickel–titanium orthodontic archwires in artificial saliva. Appl Surf Sci. 2014;317:974–81.CrossRefGoogle Scholar
  11. 11.
    Sherief DI, Abbas NH. The effect of food simulating liquids on the static frictional forces and corrosion activity of different types of orthodontic wires. J World Fed Orthod. 2017;6:165–70.CrossRefGoogle Scholar
  12. 12.
    Gil FJ, Cenizo M, Espinar E, Rodriguez A, Rúperez E, Manero JM. NiTi superelastic orthodontic wires with variable stress obtained by ageing treatments. Mater Lett. 2013;104:5–7.CrossRefGoogle Scholar
  13. 13.
    Mavroidis C. Development of advanced actuators using shape memory alloys and electrorheological fluids. J Res Nondestr Eval. 2002;14:1–32.CrossRefGoogle Scholar
  14. 14.
    Waram TC. Actuator design using shape memory alloys. 1st ed. Hamilton: Ontario Press; 1993.Google Scholar
  15. 15.
    Liaw Y-C, Su Y-YM, Lai Y-L, Lee S-Y. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis. Am J Orthod Dentofac Orthop. 2007;131:578.e12-8.CrossRefGoogle Scholar
  16. 16.
    Iijima M, Brantley WA, Guo WH, Clark WAT, Yuasa T, Mizoguchi I. X-ray diffraction study of low-temperature phase transformations in nickel–titanium orthodontic wires. Dent Mater. 2008;24:1454–60.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang XB, Verlinden B, van Humbeeck J. R-phase transformation in NiTi alloys. Mater Sci Technol. 2014;30:1517–29.CrossRefGoogle Scholar
  18. 18.
    Wang X, Li C, Verlinden B, van Humbeeck J. Effect of grain size on aging microstructure as reflected in the transformation behavior of a low-temperature aged Ti–50.8 at.% Ni alloy. Scr Mater. 2013;69:545–8.CrossRefGoogle Scholar
  19. 19.
    Brantley WA, Eliades Thieme T. Orthodontic wires. In: Orthodontic materials: scientific and clinical aspects. Stuttgart; 2001. 310 pp. Euros 91 hb, ISBN 3 13 125281Google Scholar
  20. 20.
    Duerig TW, Melton KN, Stockel D, Wayman CM, editors. Engineering aspects of shape memory alloys. London: Butter-worth-Heinemann; 1990.Google Scholar
  21. 21.
    Xu H, Müller I. Effects of mechanical vibration, heat treatment and ternary addition on the hysteresis in shape memory alloys. J Mater Sci. 1991;26:1473–7.CrossRefGoogle Scholar
  22. 22.
    Degeratu S, Bîzdoacă N. Shape Memory Alloys: Fundamentals, design and applications. Craiova: Universitaria Press; 2003.Google Scholar
  23. 23.
    Songa G, Ma N, Li HN. Applications of shape memory alloys in civil structures. Eng Struct. 2006;28:1266–74.CrossRefGoogle Scholar
  24. 24.
    Wu MH, McD Schetky L. Industrial applications for shape memory alloys. In: Proceedings of the international conference on shape memory and superelastic technologies, Pacific Grove, California; 2000. pp. 171–182.Google Scholar
  25. 25.
    Mandru D, Lungu I, Noveanu S, Tatar O. Applications of shape memory alloy actuators in biomedical engineering. Ann Oradea Univ. 2008;VII:922–7.Google Scholar
  26. 26.
    Anson T. Shape memory alloys—medical applications. Mater World. 1999;7:745–7.Google Scholar
  27. 27.
    Bîzdoacă N, Petrişor A, Bîzdoacă E, Diaconu I, Degeratu S. Shape memory alloy tendons actuated tentacle robotic structure—models and control. In: Proceedings 5th international conference on informatics in control, automation and robotics, ICINCO 2008; Vol. RA-2, May 11–15, Madeira, Portugalia, pp. 77–80.Google Scholar
  28. 28.
    Bîzdoacă N, Degeratu S. Robotic finger actuated with shape memory alloy tendon. In: WSEAS proceedings of soft computing, optimization, simulation and manufacturing systems, 2003; Malta, pp. 897–906.Google Scholar
  29. 29.
    Mor M. Review on shape memory materials. In: MATEC web of conferences vol 53, 2016; published by EDP Sciences, 01061; pp. 1–5.Google Scholar
  30. 30.
    Da Silva NJ, Grassi END, De Araujo CJ. Dynamic properties of NiTi shape memory alloy and classic structural materials: a comparative analysis. Mater Sci Forum. 2010;643:37–41.CrossRefGoogle Scholar
  31. 31.
    Bradley TG, Brantley WA, Culbertson BM. Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel–titanium orthodontic wires. Am J Orthod Dentofac Orthop. 1996;109:589–97.CrossRefGoogle Scholar
  32. 32.
    Florian G, Gabor AR, Nicolae CA, Iacobescu G, Stănică N, Mărăşescu P, Petrişor I, Leulescu M, Degeratu S, Gîngu O, Rotaru P. Physical properties (thermal, thermomechanical, magnetic, and adhesive) of some smart orthodontic wires. J Therm Anal Calorim. 2018;134:189–208.CrossRefGoogle Scholar
  33. 33.
    Degeratu S, Rizescu S, Alboteanu L, Caramida C, Rotaru P, Boncea I, Iancu C. Using a shape memory alloy spring actuator to increase the performance of solar tracking system. Ann Univ Craiova Electr Eng Ser. 2014;38:116–21.Google Scholar
  34. 34.
  35. 35.
  36. 36.
    Beer FP, Johnston ER, Dewolf J, Mazurek D. Mechanics of materials. New York: McGraw Hill; 2009. ISBN 978-0-07-015389-9.Google Scholar
  37. 37.
    Zanaboni E. One way and two way–shape memory effect: thermomechanical characterization of Ni–Ti wires. PhD Thesis, 2008, University of Pavia, Faculty of Engineering.Google Scholar
  38. 38.
    Ahlers M. The martensitic transformation. Rev Mater. 2004;9(3):169–83.Google Scholar
  39. 39.
    Porter DA, Easterling KE. Phase transformations in metals and alloys. New York: Chapman & Hall; 1992. p. 172.CrossRefGoogle Scholar
  40. 40.
    Meyers MA, Chawla KK. Mechanical behavior of materials. Upper Saddle River: Prentice-Hall; 1999.Google Scholar
  41. 41.
    Brantley WA, Jijima M, Grentzer TH. Temperature-modulated DSC study of phase transformations in nickel–titanium orthodontic wires. Termochim Acta. 2002;392–393:329–37.CrossRefGoogle Scholar
  42. 42.
    Razali MF, Mahmud AS, Mokhtar N. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: a finite element study. J Mec Behav Biomed Mater. 2018;77:234–41.CrossRefGoogle Scholar
  43. 43.
    Ren C-C, Bai Y-X, Wang H-M, Zheng Y-F, Li S. Phase transformation analysis of varied nickel–titanium orthodontic wires. Chin Med J. 2008;12:2060–4.CrossRefGoogle Scholar
  44. 44.
    Rotaru A, Constantinescu C, Mandruleanu A, Rotaru P, Moldovan A, Gyoryova K, Dinescu M, Balek V. Matrix assisted pulsed laser evaporation of zinc benzoate for ZnO thin films and non-isothermal decomposition kinetics. Thermochim Acta. 2010;498:81–91.CrossRefGoogle Scholar
  45. 45.
    Kucharczyk B, Okal J, Tylus W, Winiarski J, Szczygiel B. The effect of the calcination temperature of LaFeO3 precursors on the properties and catalytic activity of perovskite in methane oxidation. Ceram Int. 2019;45(2 Part B):2779–88.CrossRefGoogle Scholar
  46. 46.
    Malyshev AV, Petrova AB, Surzhikov AP, Sokolovskiy AN. Effect of sintering regimes on the microstructure and magnetic properties of LiTiZn ferrite ceramics. Ceram Int. 2019;45(2 Part B):2719–24.CrossRefGoogle Scholar
  47. 47.
    Perez-Maqueda LA, Gil-Gonzalez E, Wassel MA, Jha SK, Perejon A, Charalambous H, Okasinski J, Sanchez-Jimenez PE, Tsakalakos T. Insight into the BiFeO3 flash sintering process by in situ energy dispersive X-ray diffraction (ED-XRD). Ceram Int. 2019;45(2 Part B):2828–34.CrossRefGoogle Scholar
  48. 48.
    Catauro M, Bollino F, Tranquillo E, Tuffi R, Dell’Era A, Vecchio Ciprioti S. Morphological and thermal characterization of zirconia/hydroxyapatite composites prepared via sol-gel for biomedical applications. Ceram Int. 2019;45(2 Part B):2835–45.CrossRefGoogle Scholar
  49. 49.
    Bertolino V, Cavallaro G, Milioto S, Parisi F, Lazzara G. Thermal properties of multilayer nanocomposites based on halloysite nanotubes and biopolymers. J Compos Sci. 2018;2(3):41.CrossRefGoogle Scholar
  50. 50.
    Cavallaro G, Lazzara G, Milioto S, Parisi F. Halloysite nanotubes as sustainable nanofiller for paper consolidation and protection. J Therm Anal Calorim. 2014;117:1293–8.CrossRefGoogle Scholar
  51. 51.
    Criveanu MC, Actis Grande M, Rosso M. The effect of “GASCARBUSINT” on tensile properties of sintered steels. J Optoelectron Adv Mater. 2013;15:803–6.Google Scholar
  52. 52.
    Florian G, Gabor AR, Nicolae CA, Rotaru A, Marinescu CA, Iacobescu G, Stanica N, Degeratu S, Gingu O, Rotaru P. Physical and thermophysical properties of a commercial Ni–Ti shape memory alloy strip. J Therm Anal Calorim. 2019. Scholar
  53. 53.
    Golmakani MH, Vahdati khaki J, Babakhani A. Formation mechanism of Fe–Mo master alloy by aluminothermic reduction of MoS2–Fe2O3 in the presence of lime. J Min Metall Sect B Metall. 2018;54(2 B):233–41.CrossRefGoogle Scholar
  54. 54.
    Voncina M, Kores S, Ernecl M, Medved J. The role of Zr and T6 heat treatment on microstructure evolution and hardness of AlSi9Cu3(Fe) diecasting alloy. J Min Metall Sect B Metall. 2017;53(3 B):423–8.CrossRefGoogle Scholar
  55. 55.
    Holjevac Grgurić T, Manasijević D, Kožuh S, Ivanić I, Anžel I, Kosec B, Bizjak M, Govorčin Bajsic E, Balanovic L, Gojic M. The effect of the processing parameters on the martensitic transformation of Cu–Al–Mn shape memory alloy. J Alloys Compd. 2018;765:664–76.CrossRefGoogle Scholar
  56. 56.
    Holjevac Grgurić T, Manasijević D, Kožuh S, Ivanić I, Balanović L, Anžel I, Kosec B, Bizjak M, Knežević M, Gojić M. Phase transformation and microstructure study of the as-cast Cu-rich Cu–Al–Mn ternary alloys. J Min Metall Sect B Metall. 2017;53(3 B):413–22.CrossRefGoogle Scholar
  57. 57.
    Tong Y, Gu H, James RD, Qi W, Shuitcev AV, Li L. Novel TiNiCuNb shape memory alloys with excellent thermal cycling stability. J Alloys Compd. 2019;782:343–7.CrossRefGoogle Scholar
  58. 58.
    Kök M, Al-Jaf AOA, Çirak ZD, Qader IN, Özen E. Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy. J Therm Anal Calorim. 2019. Scholar
  59. 59.
    Ameur R, Chemingui M, Bachaga T, Optasanu V, Suñol JJ, Khitouni M. Thermal and structural analysis of Ni50Mn50−xInx shape memory alloys. J Therm Anal Calorim. 2019. Scholar
  60. 60.
    Ege GK, Akkuş N, Ege M. Analysis of mechanical properties of shape memory alloy. Int J Appl Math Electron Comput. 2016;4:240–3.Google Scholar
  61. 61.
    Ao W-Q, Yu H-Z, Liu F-L, Liu F-S, Li J-Q, Du Y, Liu S-H, Shi C-Y. Isothermal section of the Ni–Mn–Sb ternary system at 773 K. J Min Metall Sect B Metall. 2019;55(2 B):147–56.CrossRefGoogle Scholar
  62. 62.
    Vasic MM, Kalezić-Glišović AS, Milinčić R, Radović L, Minić DM, Maričić AM, Minić DM. Influence of mechanical activation and heat treatment on magnetic properties of nanostructured mixture Ni85.8Fe10.6Cu2.2W1.4. J Min Metall Sect B Metall. 2019;55(1 B):85–93.CrossRefGoogle Scholar
  63. 63.
    Najafi M, Mirzadeh H, Alibeyki M. Tempering of deformed and as-quenched martensite in structural steel. J Min Metall Sect B Metall. 2019;55(1 B):95–9.CrossRefGoogle Scholar
  64. 64.
    Panaiotu CG. Geomagnetism. Bucharest: Ars Docendi House; 2006.Google Scholar
  65. 65.
    Dunlop D, Ozdemir O. Rock magnetism: fundamentals and frontiers. Cambridge: Cambridge University Press; 1997.CrossRefGoogle Scholar
  66. 66.
    Field LD, Sternhell S. Analytical NMR. New York: Wiley; 1989.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • G. Florian
    • 1
  • Augusta Raluca Gabor
    • 2
  • C. A. Nicolae
    • 2
  • A. Rotaru
    • 3
    • 4
    • 5
    • 6
    Email author
  • N. Stănică
    • 6
  • N. G. Bîzdoacă
    • 7
  • P. Rotaru
    • 1
  1. 1.Department of Physics, Faculty of SciencesUniversity of CraiovaCraiovaRomania
  2. 2.National Institute for Research and Development in Chemistry and PetrochemistryBucharestRomania
  3. 3.Department of Biology and Environmental Engineering, Faculty of HorticultureUniversity of CraiovaCraiovaRomania
  4. 4.Department of Lasers, INFLPR–National Institute for LaserPlasma and Radiation PhysicsMăgurele (Ilfov), BucharestRomania
  5. 5.Department of Chemistry, Faculty of Biology and ChemistryTiraspol State UniversityChişinăuRepublic of Moldova
  6. 6.Institute of Physical Chemistry “Ilie Murgulescu”Romanian AcademyBucharestRomania
  7. 7.Department of Robotics and Mechatronics, Faculty of Automatics, Computers and ElectronicsUniversity of CraiovaCraiovaRomania

Personalised recommendations