Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2347–2356 | Cite as

Study of thermally induced interactions between theobromine and various sweeteners

  • Liviana Popescu
  • Mădălina MateescuEmail author
  • Dorothea Bajaš
  • Cristina Bugnariu
  • Gabriela Vlase
  • Daniela JumancaEmail author
  • Titus Vlase
Article
  • 18 Downloads

Abstract

In the past few decades, theobromine has been discovered to play an important role in dental caries prevention being used in different toothpastes for children. Theobromine is recognized in the literature for the vasodilatation effect, for stimulation of heart, etc. Sweeteners are known to be present in two different forms, such as natural and synthetic sweeteners, both with applications in different types of foods. The aim of this study was to obtain a perspective on the compatibility of different sweeteners with theobromine. The compatibility of the selected sweeteners (Ar. gum; trehalose; lactose; sorbitol; fructose; glucose; and galactose) with Th has been studied to verify whether these sweeteners can be used in the preparation of chewing gum or candy with properties in the prevention of caries in children. In order to evaluate the compatibility between the sweeteners and the active substance, the binary systems were designed in a 1:1 ratio. The investigation techniques used during the study were attenuated by total reflection of Fourier transform infrared spectroscopy (ATR-FTIR) and thermoanalytical techniques: thermogravimetry (TG)/derivative thermogravimetry (DTG)/heat flow (HF). The ATR-FTIR clearly suggested absence of the interaction at room temperature between sweetener and active substance for all designed systems. Thermal analysis (TG/DTG/HF) performed on open crucibles in a dynamic air atmosphere suggested that the systems designed for trehalose/Th are not possible to be used in both types of formulations (medicated chewing gum and candy). System designed for lactose/Th can be used in chewing gum preparation but for candy formulation is not feasible to be used because the degradation process is starting close to the lower temperature used in candy preparation process.

Keywords

Theobromine–sweeteners mixture Thermally induced interactions FTIR Thermal analysis 

Notes

References

  1. 1.
    William MM. Dictionary of bio-chemistry and related subjects. Philos Libr. 1943;311:530–73.Google Scholar
  2. 2.
    Martín MA, Ramos S. Cocoa polyphenols in oxidative stress: potential health implications. J Funct Foods. 2016;27:570–88.CrossRefGoogle Scholar
  3. 3.
    Sharmin DD. Comparative evaluation on antimicrobial activity of theobromine and two commercial kids fluoride toothpaste: an invitro study. J Dent Oral Health. 2016;2:103–7.Google Scholar
  4. 4.
    Tewari BB, Beaulieu-Houle G, Larsen AT, Kengne-Momo R, Auclair K, Butler I. An overview of molecular spectroscopic studies on theobromine and related alkaloids. Appl Spectrosc Rev. 2012;47(3):163–79.CrossRefGoogle Scholar
  5. 5.
    Baer DM, Pinkston EM. Environment and behavior. Boulder: Westview Press; 1997.Google Scholar
  6. 6.
    Martínez-Pinilla E, Ainhoa OA, Franco R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front Pharmacol. 2015;6:30.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Percevent JD. Impact of different chocolate matrices and effect of polyphenols on theobromine bioavailability and assessment of theobromine cytotoxicity. 2016 Unpublished.  https://doi.org/10.13140/rg.2.2.30711.42404.
  8. 8.
    Bibra BE, Ott J. Plant intoxicants: a classic text on the use of mind-altering plants. Rochester: Inner Traditions/Bear & Co.; 1995.Google Scholar
  9. 9.
    Woskresensky A. Über das Theobromin. Liebigs Ann Chem Pharm. 1842;41:125–7.CrossRefGoogle Scholar
  10. 10.
    Thorpe TE. Essays in historical chemistry. London: The MacMillan and Company; 1902.Google Scholar
  11. 11.
    Fischer E. Umwandlung des Xanthin in Theobromin und Caffein. Berichte der Deutschen Chemischen Gesellschaft. 2006; 15(1): 453–456. See also: Fischer E. Über Caffein, Theobromin, Xanthin und Guanin. Justus Liebigs Annalen der Chemie. 1882; 215(3): 253–320.Google Scholar
  12. 12.
    Fredholm BB. Methylxanthines. Handbook of experimental pharmacology, vol. 200. Stockholm: Springer; 2014, p. 24–5.Google Scholar
  13. 13.
    Smit HJ. Theobromine and the pharmacology of cocoa. In: Handbook of experimental pharmacology, 2011; pp. 200–218.Google Scholar
  14. 14.
    Jumanca D, Matichescu A, Galuscan A. An experimental method of producing hydroxyapatite. Rev Chim. 2018;6:29.Google Scholar
  15. 15.
    Amaechi BT, Porteous N, Ramalingam K, Mensinkai PK, Ccahuana Vasquez RA, Sadeghpour A, Nakamoto T. Remineralization of artificial enamel lesions by theobromine. Caries Res. 2013;47(5):399–405.CrossRefGoogle Scholar
  16. 16.
    Jumanca D, Galuscan A, Podariu AC. Protection of demineralized enamel surfaces in temporary teeth using fluorinated varnishes. Rev Chim. 2016;4:67.Google Scholar
  17. 17.
    Kargul B, Özcan M, Peker S, Nakamoto T, Simmons WB, Falster AU. Evaluation of human enamel surfaces treated with theobromine: a pilot study. Oral Health Prev Dent. 2012;10(3):275–82.PubMedGoogle Scholar
  18. 18.
    Nakamoto T, Falster AU, Simmons WB. Theobromine: a safe and effective alternative for fluoride in dentifrices. J Caffeine Res. 2016;6:1–9.CrossRefGoogle Scholar
  19. 19.
    Martínez-Pinilla E, Oñatibia-Astibia A, Franco R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front Pharmacol. 2015;6:1–5.Google Scholar
  20. 20.
    Venkatesh Babu NS, Vivek DK, Ambika G. Comparative evaluation of chlorhexidine mouthrinse versus cacao bean husk extract mouthrinse as antimicrobial agents in children. Eur Arch Pediatr Dentis. 2011;12(5):245–9.CrossRefGoogle Scholar
  21. 21.
    Nakamoto T, Falster AU, Simmons WB. Theobromine: a safe and effective alternative for fluoride in dentifrices. J Caffeine Res. 2016;6:1.CrossRefGoogle Scholar
  22. 22.
    Stuart HB. Infrared spectroscopy: fundamentals and applications. Hoboken: Wiley; 2004.CrossRefGoogle Scholar
  23. 23.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJP, Zuker CS. Mammalian sweet taste receptors. Cell. 2001;106:381–90.CrossRefGoogle Scholar
  24. 24.
    Vasudha S, Hemant KS, Mahesh KP, Swati U, Ayaz A, Nagavarma BVN. Formulation and evaluation of medicated chewing gum as antiplaque and antibacterial agent. J Young Pharm. 2014;6(4):3–10.CrossRefGoogle Scholar
  25. 25.
    Semwall R, Semwall DK, Badoni R. Chewing gum: a novel approach for drug delivery. J Appl Res. 2010;10(3):124–32.Google Scholar
  26. 26.
    Lakshmi BM, Brahma K, Swathi G, Sravani S, Indra Rao P, Shailaja P. Formulation and evaluation of domperidone candy lozenges. World J Pharm Pharm Sci. 2017;6(12):1167–75.Google Scholar
  27. 27.
    Neeraj B, Tejasavi M. Medicated lolipops: a new dosage for paediatrics. World J Pharm Pharm Sci. 2018;7(10):532–9.Google Scholar
  28. 28.
    Ledeti I, Vlase G, Ciucanip I, Olariu T, Fulias A, Suta LM, Belu I. Analysis of solid binary systems containing simvastatin. Rev Chim. 2015;66(2):240–3.Google Scholar
  29. 29.
    Ledeti I, Vlase G, Vlase T, Ciucanu I, Olariu T, Todea A, Fulias A, Suta LM. Instrumental analysis of potential lovastatin–excipient interactions in preformulation studies. Rev Chim. 2015;66(6):879–82.Google Scholar
  30. 30.
    Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Therm Anal Calorim. 2008;92(2):635–8.CrossRefGoogle Scholar
  31. 31.
    Pătraşcu J, Bedreag O, Papurica M, Biris M, Ancusa O, Onetiu D, Vlase G, Vlase T, Sandesc D. Compatibility of ester-type anesthetic agents with two polysaccharides. Rev Chim. 2014;65(8):921–4.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Liviana Popescu
    • 1
  • Mădălina Mateescu
    • 2
    Email author
  • Dorothea Bajaš
    • 2
  • Cristina Bugnariu
    • 2
  • Gabriela Vlase
    • 2
  • Daniela Jumanca
    • 1
    Email author
  • Titus Vlase
    • 2
  1. 1.Faculty of Dental MedicineUniversity of Medicine and Pharmacy “Victor Babes”TimisoaraRomania
  2. 2.Research Centre for Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimisoaraRomania

Personalised recommendations