Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1979–1986 | Cite as

Preparation of microencapsulated KNO3 by solvothermal technology for thermal energy storage

  • M. D. Romero-SanchezEmail author
  • Radu R. Piticescu
  • Adrian M. Motoc
  • Madalina Popescu
  • Albert I. Tudor


In this study, ZnO has been used as inorganic shell material (in situ synthetized) for the encapsulation of KNO3, an inorganic molten salt commonly used in concentrated solar plants applications. The thermal stability of microparticles encapsulated by using a solvothermal process has been optimized by adjusting the parameters affecting the properties of the microparticles, such as the core:shell ratio and the temperature during the microencapsulation process. The energy stored and released after each thermal cycle was evaluated by differential scanning calorimetry. Chemical composition of microparticles was evaluated by infrared spectroscopy and inductively coupled plasma spectroscopy, as well as morphology was characterized by scanning electron microscopy. Results have shown the solvothermal synthesis as a feasible process for the microencapsulation of molten salts by obtaining KNO3 particles covered by ZnO microcrystals. These particles have thermal energy storage and release capacities and temperatures similar to those of raw KNO3, being the temperature used during the solvothermal process the parameter determining the thermal stability of the microparticles, as demonstrated by carrying out durability tests through consecutive heating–cooling thermal cycles (250–400 °C).


Potassium nitrate PCM Thermal energy storage CSP Thermal stability Microencapsulation Solvothermal 



The research leading to these results is based on the financial support from NASR, ENERHIGH project, under the Competitive Operational Programme 2014–2020. Contract 93/09.09.2016.


  1. 1.
    Nunes VMB, Queirós CS, Lourenço MJV, Santos FJV, Nieto de Castro CA. Molten salts as engineering fluids—A review. Part I. Molten alkali nitrates. Appl Energy. 2016;183:603–11.CrossRefGoogle Scholar
  2. 2.
    Yu-ting Wu, Ying Li, Nan Ren, Chong-fang Ma. Improving the thermal properties of NaNO3–KNO3 for concentrating solar power by adding additives. Sol Energy Mater Sol Cells. 2017;160:263–8.CrossRefGoogle Scholar
  3. 3.
    Raade JW, Padowitz D. Development of molten salt heat transfer fluid with low melting point and high thermal stability. J Sol Energy Eng. 2011;133(3):031013.CrossRefGoogle Scholar
  4. 4.
    Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems—a review. Appl Energy. 2015;146:383–96.CrossRefGoogle Scholar
  5. 5.
    Qiu S, Solomon L, Fang M. Study of material compatibility for a thermal energy storage system with phase change material. Energies. 2018;11:572.CrossRefGoogle Scholar
  6. 6.
    Kuravi S, Trahan J, Yogi Goswami D, Rahman MM, Stefanakos EK. Thermal energy storage technologies and systems for concentrating solar power plants. Prog Energy Combust Sci. 2013;39:285–319.CrossRefGoogle Scholar
  7. 7.
    Guillot S, Faik A, Rakhmatullin A, Lambert J, Veron E, Echegut P, Bessada C, Calvet N, Py X. Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl Energy. 2012;94:174–81.CrossRefGoogle Scholar
  8. 8.
    Xu B, Li P, Chan Ch. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 2015;160:286–307.CrossRefGoogle Scholar
  9. 9.
    Bilir L, İlken Z. Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Appl Therm Eng. 2005;25(10):1488–502.CrossRefGoogle Scholar
  10. 10.
    Mathura A, Kasetty R, Oxley J, Mendez J, Nithyanandam K. Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia. 2014;49:908–15.CrossRefGoogle Scholar
  11. 11.
    US 2011/0259544. Encapsulated phase change apparatus for thermal energy storage.Google Scholar
  12. 12.
    Pitié F, Zhao CY, Cáceres G. Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles. Energy Environ Sci. 2011;4:2117–24.CrossRefGoogle Scholar
  13. 13.
    Graham M, Shchukina E, Castro P, Shchukin D. Nanocapsules containing salt hydrate phase change materials for thermal energy storage. J Mater Chem A. 2016;4:16906–12.CrossRefGoogle Scholar
  14. 14.
    US 2015/0284616. Encapsulation of thermal energy storage media.Google Scholar
  15. 15.
    Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012;16(8):5603–16.CrossRefGoogle Scholar
  16. 16.
    Cáceres G, Fullenkamp K, Montané M, Naplocha K, Dmitruk A. Review encapsulated nitrates phase change material selection for use as thermal storage and heat transfer materials at high temperature in concentrated solar power plants. Energies. 2017;10(9):1318.CrossRefGoogle Scholar
  17. 17.
    Milián YE, Gutiérrez A, Grágeda M, Ushak S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew Sustain Energy Rev. 2017;73:983–99.CrossRefGoogle Scholar
  18. 18.
    Platte D, Helbig U, Houbertz R, Sextl G. Microencapsulation of alkaline salt hydrate melts for phase change applications by surface thiol-michael addition polymerization. Macromol Mater Eng. 2013;298:67–77.CrossRefGoogle Scholar
  19. 19.
    Shchukina EM, Graham M, Zheng Z, Shchukin DG. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev. 2018;47(11):4156–75.CrossRefGoogle Scholar
  20. 20.
    Hong Y, Ding S, Wu W, Hu J, Voevodin AA, Gschwender L, Snyder E, Chow L, Su M. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer. Appl Mater Interfaces. 2010;2:1685–91.CrossRefGoogle Scholar
  21. 21.
    Sánchez L, Sánchez P, de Lucas A, Carmona M, Rodríguez JF. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym Sci. 2007;285(12):1377–85.CrossRefGoogle Scholar
  22. 22.
    Selçuk Mert M, Hande Mert H, Sert M. Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. J Therm Anal Calorim. 2019;136(4):1551–61.CrossRefGoogle Scholar
  23. 23.
    Su W, Zhou T, Li Y, Lv Y. Development of microencapsulated phase change material with poly (methyl methacrylate) shell for thermal energy storage. Energy Procedia. 2019;158:4483–8.CrossRefGoogle Scholar
  24. 24.
    Maruoka N, Akiyama T. Thermal stress analysis of PCM encapsulation for heat recovery of high temperature waste heat. J Chem Eng Japan. 2003;36(7):794–8.CrossRefGoogle Scholar
  25. 25.
    Nomura T, Sheng N, Zhu Ch, Saito G, Hanzaki D, Hiraki T, Akiyama T. Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation. Appl Energy. 2017;188:9–18.CrossRefGoogle Scholar
  26. 26.
    Tudor AI, Motoc AM, Ciobota CF, Ciobota DN, Piticescu RR, Romero-Sanchez MD. Solvothermal method as a green chemistry solution for microencapsulation of phase change materials for high temperature thermal energy storage. Manuf Rev. 2018;5(4):1–12.Google Scholar
  27. 27.
    Kenisarin MM. High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev. 2010;14:955–70.CrossRefGoogle Scholar
  28. 28.
    Ramakrishnan S, Sanjayan J, Wang X, Alam M, Wilson J. A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl Energy. 2015;157:85–94.CrossRefGoogle Scholar
  29. 29.
    Mihaiu S, Madarász J, Pokol G, Szilágyi IM, Kaszás T, Mocioiu OC, Atkinson I, Toader A, Munteanu C, Marinescu VE, Zaharescu M. Thermal behaviour of ZnO precursor powders obtained from aqueous solutions. Rev Roum Chim. 2013;58(4–5):335–45.Google Scholar
  30. 30.
    Chouillet C, Krafft JM, Louis C, Lauron-Pernot H. Characterization of zinc hydroxynitrates by diffuse reflectance infrared spectroscopy-structural modifications during thermal treatment. Spectrochim Acta A Mol Biomol Spectrosc. 2004;60(3):505–11.CrossRefGoogle Scholar
  31. 31.
    Kee SY, Munusamy Y, Ong KS, Cornelis Metselaar HS, Chee SY, La KCh. Thermal performance study of composite phase change material with polyacrylicand conformal coating. Materials. 2017;10:873. Scholar
  32. 32.
    Sokolov PS, Baranov AN, Dobrokhotova ZhV, Solozhenkoa VL. Synthesis and thermal stability of cubic ZnO in the salt nanocomposites. Russ Chem Bull. 2010;59(2):325–8.CrossRefGoogle Scholar
  33. 33.
    Nityashree N, Rajamathi M. Interstratified composite of the anionic clays, Zn5(OH)8(NO3)2·2H2O and Ni3Zn2(OH)8(NO3)2·2H2O, by delamination-costacking. J Phys Chem Solid. 2013;74(8):1164–8.CrossRefGoogle Scholar
  34. 34.
    Nyquist RA, Kagel RO. Handbook of infrared and raman spectra of inorganic compounds and organic salts. New York and London: Elsevier Inc., Academic Press; 1971.Google Scholar
  35. 35.
    Newman SP, Jones W. Comparative study of some layered hydroxide salts containing exchangeable interlayer anions. J Solid State Chem. 1999;148:26–40.CrossRefGoogle Scholar
  36. 36.
    Sari A, Kaygusuz K. Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling. Renew Energy. 2003;28:939–48.CrossRefGoogle Scholar
  37. 37.
    Liu M, Bell S, Tay S, Will G, Saman W, Bruno F. Stability and corrosion testing of a high temperature phase change material for CSP applications. AIP Conf Proc. 2016;1734:050029.CrossRefGoogle Scholar
  38. 38.
    Rathod M, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev. 2013;18:246–58.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.National R&D Institute for Nonferrous and Rare MetalsPantelimonRomania
  2. 2.Applynano SolutionsAlicanteSpain

Personalised recommendations