Advertisement

Preformulation studies for atorvastatin calcium

An instrumental approach
  • Mihaela Cristea
  • Bianca Baul
  • Ionuţ LedeţiEmail author
  • Adriana Ledeţi
  • Gabriela Vlase
  • Titus Vlase
  • Bożena Karolewicz
  • Oana Ştefănescu
  • Anca Octavia Dragomirescu
  • Cezara Mureşan
  • Dan-Simion Cipu
  • Dana Velimirovici
  • Mircea Ştefănescu
Article

Abstract

This paper deals with the study of compatibility between antihyperlipidemic agent atorvastatin calcium trihydrate (ATV) and eight pharmaceutical excipients used in the development of solid dosage forms, namely citric acid, anhydrous lactose, magnesium citrate, magnesium carbonate, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30, colloidal silica and sorbitol. As investigational tools, universal attenuated total reflectance Fourier transform infrared spectroscopy and powder X-ray diffractogram patterns were used for binary mixtures of ATV with each excipient at ambient condition and then completed by subjecting the samples to thermal stress using thermal analysis (TG/DTG/HF), in non-isothermal conditions and in oxidative medium. It was shown the binary mixtures do not present interactions between ATV and excipients when stored under ambient conditions for 2 months, while under thermal stress, ATV presents interactions with sorbitol.

Keywords

Atorvastatin Compatibility study Excipient FTIR PXRD Statin Thermal stability 

Notes

References

  1. 1.
    Chadha R, Bhandari S. Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharmaceut Biomed Anal. 2014;87:82–97.CrossRefGoogle Scholar
  2. 2.
    Liltorp K, Larsen TG, Willumsen B, Holm R. Solid state compatibility studies with tablet excipients using non thermal methods. J Pharm Biomed Anal. 2011;55(3):424–8.CrossRefGoogle Scholar
  3. 3.
    Bhattacharyya L, Schuber S, Sheeha C, William R. Excipients: Background/Introduction. In: Katdare A, Chaubal M, editors. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. New York: Informa Healthcare USA, Inc.; 2006. p. 1–2.Google Scholar
  4. 4.
    Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.Google Scholar
  5. 5.
    Julio AT, Zamara IF, Garcia JS, Trevisan MG. Compatibility of sildenafil citrate and pharmaceutical excipients by thermal analysis and LC–UV. J Therm Anal Calorim. 2013;111:2037–44.CrossRefGoogle Scholar
  6. 6.
    Bruni G, Berbenni V, Milanese C, Girella A, Marini A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2010;102:193–201.CrossRefGoogle Scholar
  7. 7.
    de Barros Lima IP, Lima NGPB, Barros DMC, et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim. 2015;120:719–32.CrossRefGoogle Scholar
  8. 8.
    Stanisz B, Regulska K, Kania J, Garbacki P. Effect of pharmaceutical excipients on the stability of angiotensin-converting enzyme inhibitors in their solid dosage formulations. Drug Dev Ind Pharm. 2013;39(1):51–61.CrossRefGoogle Scholar
  9. 9.
    Djordjevic FN, Antonijevic MD, Pavlovic A, Vuckovic I, Nikolic K, Agbaba D. The stress stability of olanzapine: studies of interactions with excipients in solid state pharmaceutical formulations. Drug Dev Ind Pharm. 2015;41(3):502–14.CrossRefGoogle Scholar
  10. 10.
    Daniel JSP, Veronez IP, Rodrigues LL, Trevisan MG, Garcia JS. Risperidone–Solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques. Thermochim Acta. 2013;568:148–55.CrossRefGoogle Scholar
  11. 11.
    Ledeti A, Vlase G, Vlase T, et al. Solid-state preformulation studies of amiodarone hydrochloride. J Therm Anal Calorim. 2016;126(1):181–7.CrossRefGoogle Scholar
  12. 12.
    Buda V, Andor M, Ledeti A, Ledeti I, et al. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18:164.  https://doi.org/10.3390/ijms18010164.CrossRefGoogle Scholar
  13. 13.
    Fulias, et al. Thermal behaviour of procaine and benzocaine Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J. 2013;7:140.CrossRefGoogle Scholar
  14. 14.
    Monkhouse DC, Maderich A. Whither compatibility testing? Drug Dev Ind Pharm. 1989;15:2115–30.CrossRefGoogle Scholar
  15. 15.
    http://www.drugbank.ca/drugs/DB01076. Accessed 26 Feb 2017.
  16. 16.
  17. 17.
  18. 18.
    Kerc J, Salobir M, Bavec B. 2006; Patent US 7030151 B2.Google Scholar
  19. 19.
  20. 20.
    Ledeti I, Vlase G, Vlase T, Suta LM, Todea A, Fulias A. Selection of solid-state excipients for simvastatin dosage forms through thermal and nonthermal techniques. J Therm Anal Calorim. 2015;121(3):1093–102.CrossRefGoogle Scholar
  21. 21.
    Ledeti I, Vlase G, Vlase T, Ciucanu I, Olariu T, Todea A, Fulias A, Suta LM. Instrumental analysis of potential lovastatin—excipient interactions in preformulation studies. Rev Chim. 2015;66(6):879–82.Google Scholar
  22. 22.
    da Silva EP, Pereira MAV, de Barros Lima IP, et al. Compatibility study between atorvastatin and excipients using DSC and FTIR. J Therm Anal Calorim. 2016;123:933–9.CrossRefGoogle Scholar
  23. 23.
    Dewan I, Shahriar M, Islam SMA. Study of differential scanning calorimetry of atorvastatin in solid solution. Bangladesh Pharm J. 2011;14(2):141–6.Google Scholar
  24. 24.
  25. 25.
  26. 26.
    Lemsi M, Galai H, Louhaichi MR, Fessi H, Kalfat R. Amorphization of atorvastatin calcium by mechanical process: characterization and stabilization within polymeric matrix. J Pharm Innov. 2017;12:216–25.  https://doi.org/10.1007/s12247-017-9282-0.CrossRefGoogle Scholar
  27. 27.
    Dissertation—discovering new crystalline forms of atorvastatin calcium—new strategies for screening, Yong Suk Jin, https://d-nb.info/1029293406/34.
  28. 28.
    Ledeţi I, Ledeţi A, Vlase G, Vlase T, Matusz P, Bercean V, Suta L-M, Piciu D. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations. J Pharm Biomed Anal. 2016;125:33–40.CrossRefGoogle Scholar
  29. 29.
    Ilici M, Bercean V, Venter M, Ledeti I, Olariu T, Suta L-M, Fulias A. Investigations on the thermal-induced degradation of transitional coordination complexes containing (3 h-2-thioxo-1,3,4-thiadiazol-5-yl)thioacetate moiety. Rev Chim. 2014;65(10):1142–5.Google Scholar
  30. 30.
    Ledeţi I, Murariu M, Vlase G, Vlase T, Doca N, Ledeţi A, Şuta L-M, Olariu T. Investigation of thermal-induced decomposition of iodoform. J Therm Anal Calorim. 2017;127(1):565–70.CrossRefGoogle Scholar
  31. 31.
    Suta LM, Vlase G, Ledeti A, Vlase T, Matusz P, Trandafirescu C, Circioban D, Olariu S, Ivan C, Murariu MS, Stelea L, Ledeti I. Solid-state thermal behaviour of cholic acid. Rev Chim. 2016;67(2):329–31.Google Scholar
  32. 32.
    Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, Cristescu C, Voicu M, Suciu L, Tomescu M. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18(1):164.CrossRefGoogle Scholar
  33. 33.
    Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, Ledeti I, Vlase T, Murariu M. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2017;1–8.Google Scholar
  34. 34.
    Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid-state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mihaela Cristea
    • 1
  • Bianca Baul
    • 2
  • Ionuţ Ledeţi
    • 2
    Email author
  • Adriana Ledeţi
    • 2
  • Gabriela Vlase
    • 3
  • Titus Vlase
    • 3
  • Bożena Karolewicz
    • 4
  • Oana Ştefănescu
    • 1
  • Anca Octavia Dragomirescu
    • 2
  • Cezara Mureşan
    • 5
  • Dan-Simion Cipu
    • 5
  • Dana Velimirovici
    • 5
  • Mircea Ştefănescu
    • 1
  1. 1.Faculty of Industrial Chemistry and Environmental EngineeringPolitehnica University of TimişoaraTimişoaraRomania
  2. 2.Faculty of PharmacyUniversity of Medicine and Pharmacy “Victor Babeş”TimişoaraRomania
  3. 3.Research Centre for Thermal Analysis in Environmental ProblemsWest University of TimisoaraTimişoaraRomania
  4. 4.Department of Drug Form TechnologyWroclaw Medical UniversityWroclawPoland
  5. 5.Faculty of MedicineUniversity of Medicine and Pharmacy “Victor Babeş”TimişoaraRomania

Personalised recommendations