Kinetic analysis of the formation of high-temperature phases in an illite-based ceramic body using thermodilatometry

  • Tomáš Ondro
  • Tomáš Húlan
  • Omar Al-Shantir
  • Štefan Csáki
  • Tereza Václavů
  • Anton TrníkEmail author


A non-isothermal kinetic analysis of the sintering process of an illitic clay is studied by thermodilatometry. For this study, illitic clay with over 80 mass% of illite content, originated in the Füzérradvány location in northeastern Hungary, is used as basic material. The measurements are performed using a push-rod dilatometer on compact samples with heating rates from 1 to 10 °C min−1 in dynamic N2 atmosphere. The Kissinger method is used for the parameterization of the process. The results show that the reaction sintering runs in several overlapping steps. The determined values of the apparent activation energy of the first step and second step are EA = (625 ± 18) kJ mol−1 and EA = (575 ± 14) kJ mol−1, respectively. The results also show that both reactions could be characterized by the thickening of long cylinders (needles) or growth of needles and plates of finite long dimensions.


Kinetics Illite Sintering Apparent activation energy 



This research was supported by the Czech Science Foundation, Grant No. GA17-16772S.


  1. 1.
    Rice RW. Ceramic fabrication technology. Boca Raton: CRC Press; 2002.CrossRefGoogle Scholar
  2. 2.
    Kang S-JL. Sintering: densification, grain growth and microstructure. Oxford: Elsevier Butterworth-Heinemann; 2004.Google Scholar
  3. 3.
    Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:1–8.CrossRefGoogle Scholar
  4. 4.
    Bohor BF. High-temperature phase development in illitic clays. Clays Clay Miner. 1963;12:233–46.CrossRefGoogle Scholar
  5. 5.
    Aras A. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Appl Clay Sci. 2004;24:257–69.CrossRefGoogle Scholar
  6. 6.
    Khalfaoui A, Kacim S, Hajjaji M. Sintering mechanism and ceramic phases of an illitic-chloritic raw clay. J Eur Ceram Soc. 2006;26:161–7.CrossRefGoogle Scholar
  7. 7.
    Furlong RB. Electron diffraction and micrographic study of the high-temperature changes in illite and montmorillonite under continuous heating conditions. Clays Clay Miner. 1967;15:87–101.CrossRefGoogle Scholar
  8. 8.
    Sedmale G, Sperberga I, Sedmalis U, Valancius Z. Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite. J Eur Ceram Soc. 2006;26:3351–5.CrossRefGoogle Scholar
  9. 9.
    Carroll DL, Kemp TF, Bastow TJ, Smith ME. Solid-state NMR characterisation of the thermal transformation of a Hungarian white illite. Solid State Nucl Magn Reson. 2005;28:31–43.CrossRefGoogle Scholar
  10. 10.
    Wattanasiriwech D, Srijan K, Wattanasiriwech S. Vitrification of illitic clay from Malaysia. Appl Clay Sci. 2009;43:57–62.CrossRefGoogle Scholar
  11. 11.
    Wang G, Wang H, Zhang N. In situ high temperature X-ray diffraction study of illite. Appl Clay Sci. 2017;146:254–63.CrossRefGoogle Scholar
  12. 12.
    Ptáček P, Křečková M, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technol. 2012;232:24–30.CrossRefGoogle Scholar
  13. 13.
    Emmerich W-D, Hayhurst J, Kaisersberger E. High temperature dilatometer study of special ceramics and their sintering kinetics. Thermochim Acta. 1986;106:71–8.CrossRefGoogle Scholar
  14. 14.
    Knapek M, Húlan T, Minárik P, Dobroň P, Štubňa I, Stráská J, et al. Study of microcracking in illite-based ceramics during firing. J Eur Ceram Soc. 2016;36:221–6.CrossRefGoogle Scholar
  15. 15.
    Húlan T, Trník A, Štubňa I, Bačík P, Kaljuvee T, Vozár L. Development of Young’s modulus of illitic clay during heating up to 1100 °C. Mater Sci Medzg. 2015;21:429–34.Google Scholar
  16. 16.
    Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. The kinetics of Al-Si spinel phase crystallization from calcined kaolin. J Solid State Chem. 2010;183:2565–9.CrossRefGoogle Scholar
  17. 17.
    Liu YF, Liu XQ, Tao SW, Meng GY, Sorensen OT. Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceram Int. 2002;28:479–86.CrossRefGoogle Scholar
  18. 18.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  19. 19.
    Karamanov A, Pelino M. Sinter-crystallization in the diopside-albite system. Part II. Kinetics of crystallization and sintering. J Eur Ceram Soc. 2006;26:2519–26.CrossRefGoogle Scholar
  20. 20.
    Lopes AAS, Monteiro RCC, Soares RS, Lima MMRA, Fernandes MHV. Crystallization kinetics of a barium-zinc borosilicate glass by a non-isothermal method. J Alloys Compd. 2014;591:268–74.CrossRefGoogle Scholar
  21. 21.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  22. 22.
    Ondro T, Trník A. Kinetic behaviour of thermal transformations of kaolinite. In: AIP conference proceedings 2018;1988.Google Scholar
  23. 23.
    Ondro T, Trník A. Non-isothermal kinetic analysis of processes occurring during thermal treatment of kaolinite. In: AIP conference proceedings 2017;1866.Google Scholar
  24. 24.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.CrossRefGoogle Scholar
  25. 25.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.CrossRefGoogle Scholar
  26. 26.
    Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of PhysicsConstantine the Philosopher University in NitraNitraSlovakia
  2. 2.Department of Physics of MaterialsCharles UniversityPragueCzech Republic
  3. 3.Institute of Plasma PhysicsCzech Academy of SciencesPragueCzech Republic
  4. 4.Department of Condensed Matter PhysicsCharles UniversityPragueCzech Republic
  5. 5.Department of Materials Engineering and ChemistryCzech Technical University in PraguePragueCzech Republic

Personalised recommendations