Thermal analysis on a nanofluid-filled rectangular cavity with heated fins of different geometries under magnetic field effects

  • Dengwei JingEmail author
  • Songwei Hu
  • M. Hatami
  • Yuanxiang Xiao
  • Jianpeng Jia


Rectangular cavity filled with a non-Newtonian shear-thinning nanofluid was investigated considering varied fin geometry under a vertical magnetic field. Irreversibility and entropy generation mechanisms were investigated by finite element method. The effect of geometry parameter (a), Hartmann number (Ha), nanoparticles volume fraction (φ) and nanoparticles type (Fe3O4, CuO and Al2O3) on the Nusselt numbers, entropy generations and Bejan numbers were investigated by the response surface methodology (RSM). Increasing a leads to an increase in both local and average Nusselt numbers and increment in different terms of entropy generation, while it reduces the Bejan number. Fe3O4 nanoparticle shows the highest Nusselt number compared to other nanoparticles. RSM analysis revealed that a = 0.29 and φ = 0.04 are the optimized values for the goal of maximum Nusselt number and minimum Bejan number.


Entropy generation Irreversibility Non-Newtonian nanofluid Bejan number Nusselt number 



The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51776165, 51888103) and the financial support from Royal Society-Newton Advanced Fellowship grant (NAF\R1\191163).This work was also supported by the China Fundamental Research Funds for the Central Universities.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Choi SUS. Enhancing thermal conductivity of fluid with nanoparticles. In: Proceedings of the ASME international mechanical engineering congress, ASME FED-231; 1995. p. 99–105.Google Scholar
  2. 2.
    Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.CrossRefGoogle Scholar
  3. 3.
    Prasher R. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6(7):1529–34.CrossRefGoogle Scholar
  4. 4.
    Du M, Tang GH. Optical property of nanofluids with particle agglomeration. Sol Energy. 2015;122:864–72.CrossRefGoogle Scholar
  5. 5.
    Jin J, Jing D. A novel liquid optical filter based on magnetic electrolyte nanofluids for hybrid photovoltaic/thermal solar collector application. Sol Energy. 2017;155:51–61.CrossRefGoogle Scholar
  6. 6.
    Liu Z, Yan Y, Fu R, Alsaady M. Enhancement of solar energy collection with magnetic nanofluids. Therm Sci Eng Prog. 2018;8:130–5.CrossRefGoogle Scholar
  7. 7.
    Kumar A, Subudhi S. Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transf. 2018;54(2):241–65.CrossRefGoogle Scholar
  8. 8.
    Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38.CrossRefGoogle Scholar
  9. 9.
    Wang L, Wang Y, Yan X, Wang X, Feng B. Investigation on viscosity of Fe3O4 nanofluid under magnetic field. Int Commun Heat Mass Transf. 2016;72:23–8.CrossRefGoogle Scholar
  10. 10.
    Shi L, He Y, Hu Y, Wang X. Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Conver Manag. 2018;177:249–57.CrossRefGoogle Scholar
  11. 11.
    Wang J, Fan M, Bian X, Yu M, Wang T, Liu S, Yang Y, Tian Y, Guan R. Enhanced magnetic heating efficiency and thermal conductivity of magnetic nanofluids with FeZrB amorphous nanoparticles. J Magn Magn Mater. 2018;465:480–8.CrossRefGoogle Scholar
  12. 12.
    Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.CrossRefGoogle Scholar
  13. 13.
    Song D, Jing D, Luo B, Geng J, Ren Y. Modeling of anisotropic flow and thermodynamic properties of magnetic nanofluids induced by external magnetic field with varied imposing directions. J Appl Phys. 2015;118(4):045101.CrossRefGoogle Scholar
  14. 14.
    Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.CrossRefGoogle Scholar
  15. 15.
    Song D, Jing D, Geng J, Ren Y. A modified aggregation based model for the accurate prediction of particle distribution and viscosity in magnetic nanofluids. Powder Technol. 2015;283:561–9.CrossRefGoogle Scholar
  16. 16.
    Sutradhar P, Khanna SN, Atulasimha J. Magnetic behaviour of assemblies of interacting cobalt-carbide nanoparticles. J Magn Magn Mater. 2019;469:128–32.CrossRefGoogle Scholar
  17. 17.
    Krzyminiewski R, Dobosz B, Schroeder G, Kurczewska J. Focusing of Fe3O4 nanoparticles using a rotating magnetic field in various environments. Phys Lett A. 2018;382(44):3192–6.CrossRefGoogle Scholar
  18. 18.
    Harabech M, Leliaert J, Coene A, Crevecoeur G, Van Roost D, Dupré L. The effect of the magnetic nanoparticle’s size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia. J Magn Magn Mater. 2017;426:206–10.CrossRefGoogle Scholar
  19. 19.
    Kefayati GHR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89.CrossRefGoogle Scholar
  20. 20.
    Pageni P, Yang P, Bam M, Zhu T, Chen YP, Decho AW, Nagarkatti M, Tang C. Recyclable magnetic nanoparticles grafted with antimicrobial metallopolymer-antibiotic bioconjugates. Biomaterials. 2018;178:363–72.CrossRefGoogle Scholar
  21. 21.
    Kefayati GHR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89.CrossRefGoogle Scholar
  22. 22.
    Hatami M. Different shapes of Fe3O4 nanoparticles on the free convection and entropy generation in a wavy-wall square cavity filled by power-law non-Newtonian nanofluid. Int J Heat Technol. 2018;36(2):509–24.CrossRefGoogle Scholar
  23. 23.
    Kefayati GHR. Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity. Int J Heat Mass Transf. 2018;116:762–812.CrossRefGoogle Scholar
  24. 24.
    Kefayati GHR, Tang H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. Int J Hydrog Energy. 2017;42(27):17284–327.CrossRefGoogle Scholar
  25. 25.
    Hatami M, Jing D. Optimization of wavy direct absorber solar collector (WDASC) using Al2O3–water nanofluid and RSM analysis. Appl Therm Eng. 2017;121:1040–50.CrossRefGoogle Scholar
  26. 26.
    Pourmehran O, Rahimi-Gorji M, Hatami M, Sahebi SAR, Domairry G. Numerical optimization of microchannel heat sink (MCHS) performance cooled by KKL based nanofluids in saturated porous medium. J Taiwan Inst Chem Eng. 2015;55:49–68.CrossRefGoogle Scholar
  27. 27.
    Hatami M, Song D, Jing D. Optimization of a circular-wavy cavity filled by nanofluid under the natural convection heat transfer condition. Int J Heat Mass Transf. 2016;98:758–67.CrossRefGoogle Scholar
  28. 28.
    Hatami M. Nanoparticles migration around the heated cylinder during the RSM optimization of a wavy-wall enclosure. Adv Powder Technol. 2017;28(3):890–9.CrossRefGoogle Scholar
  29. 29.
    Hatami M, Zhou J, Geng J, Song D, Jing D. Optimization of a lid-driven T-shaped porous cavity to improve the nanofluids mixed convection heat transfer. J Mol Liq. 2017;231:620–31.CrossRefGoogle Scholar
  30. 30.
    Hatami M. Numerical study of nanofluids natural convection in a rectangular cavity including heated fins. J Mol Liq. 2017;233:1–8.CrossRefGoogle Scholar
  31. 31.
    Benos LT, Sarris IE. Analytical study of the magnetohydrodynamic natural convection of a nanofluid filled horizontal shallow cavity with internal heat generation. Int J Heat Mass Transf. 2019;130:862–73.CrossRefGoogle Scholar
  32. 32.
    Benos L, Karvelas EG, Sarris IE. A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton–Crosser model. Int J Heat Mass Transf. 2019;135:548–60.CrossRefGoogle Scholar
  33. 33.
    Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofluid filling triangular cavity with semicircular bottom wall. J Therm Anal Calorim. 2019;6:3485–97.CrossRefGoogle Scholar
  34. 34.
    Bellos E, Tzivanidis C. A review of concentrating solar thermal collectors with and without nanofluids. J Therm Anal Calorim. 2019;135:763–86.CrossRefGoogle Scholar
  35. 35.
    Sekrani G, Poncet S, Proulx P. Conjugated heat transfer and entropy generation of Al2O3–water nanofluid flows over a heated wall-mounted obstacle. J Therm Anal Calorim. 2019;135:963–79.CrossRefGoogle Scholar
  36. 36.
    Tan Y, Liu M, Wei D, Tang H, Feng X, Shen S. A simple green approach to synthesis of sub-100 nm carbon spheres as template for TiO2 hollow nanospheres with enhanced photocatalytic activities. Sci China Mater. 2018;61:869–77.CrossRefGoogle Scholar
  37. 37.
    Chen J, Dong C-L, Zhao D, Huang Y-C, Wang X, Samad L, Dang L, Shearer M, Shen S, Guo L. Molecular design of polymer heterojunctions for efficient solar-hydrogen conversion. Adv Mater. 2017;29(21):1606198.CrossRefGoogle Scholar
  38. 38.
    Wang B, Cai H, Shen S. Single metal atom photocatalysis. Small Methods. 2019. Scholar
  39. 39.
    Wang Y, Shen S. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances. Acta Phys Chim Sin. 2020. Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Mechanical EngineeringEsfarayen University of TechnologyEsfarayenIran
  3. 3.Oil and Gas Technology Research Institute of Changqing Oilfield CompanyXi’anChina

Personalised recommendations