Advertisement

Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage

  • Gao Long 
  • Sun Xuegeng 
  • Sun Baizhong Email author
  • Che Deyong 
  • Li Shaohua 
  • Liu Zhongze 
Article
  • 11 Downloads

Abstract

Using palmitic acid (PA), expanded graphite (EG), and carbon fiber (CF) as raw materials, PA/EG/CF composite phase change materials (CPCMs) with diverse CF contents were invented by melt blending approach. The effects of different ratios on thermal properties were studied by experimental characterization and testing. Scanning electron microscopy images displayed that PA was adsorbed in the pores of the EG surface, while CF was disorderly but uniformly embedded in the interior and surface of pores. The chemical stability and thermal decomposition stability of CPCM at low temperature were proved by Fourier transform infrared spectrometer and thermogravimetric analyzer results, respectively. According to the law of heat storage/release time and latent heat variation, the optimal ratio scheme was determined, and its heat storage/release time was 65% and 59% lower than pure PA, respectively. The form-stable materials were prepared by compression forming method, and thermal cycling experiment results demonstrated that the higher the content of CF, the stronger the inhibition of mass loss. Based on the experimental results, the PA/EG/CF CPCM has the advantages of stable phase transition, strong stability, and fast heat storage and release rate, so it has a marvelous application prospect in the field of low-temperature heat storage engineering.

Keywords

Carbon-based CPCM Preparation Thermal performance Thermal energy storage 

Abbreviations

CA

Capric acid

CBCF

Carbon-bonded carbon fiber

CF

Carbon fiber

CNT

Carbon nanotubes

CPCM

Composite phase change material

DSC

Differential scanning calorimeter

EG

Expanded graphite

EVA

Ethylene-vinyl acetate

FG

Foam graphite

FT-IR

Fourier transform infrared spectrometer

GN

Graphene

GnPs

Graphene nanoplatelets

LA

Lauric acid

MA

Myristic acid

MC

Mesoporous carbon

PA

Palmitic acid

PCM

Phase change material

RSS

Root sum square

SA

Stearic acid

SEM

Scanning electron microscopes

TGA

Thermogravimetric analyzer

XRD

X-ray powder diffractometer

List of symbols

ΔH

Latent heat (kJ kg−1)

W

Mass fraction (%)

R145

Mass fraction at 145 °C (%)

R400

Mass fraction of residue at 400 °C (%)

ΔW

Mass loss rate (%)

Notes

Acknowledgements

This research is jointly financed by the Science and Technology Development Plan Program of Jilin Province, China (No. 20180201008SF), and the Jilin Provincial Department of Education Research Program (No. JJKH20180434KJ).

References

  1. 1.
    Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.CrossRefGoogle Scholar
  2. 2.
    Pomianowski M, Heiselberg P, Zhang YP. Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 2013;67:56–69.CrossRefGoogle Scholar
  3. 3.
    Zhang HL, Baeyens J, Caceres G, et al. Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci. 2016;53:1–40.CrossRefGoogle Scholar
  4. 4.
    da Cunha JP, Eames P. Thermal energy storage for low and medium temperature applications using phase change materials: a review. Appl Energy. 2016;177:227–38.CrossRefGoogle Scholar
  5. 5.
    Zhou SY, Zhou Y, Ling ZY, et al. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs. Appl Therm Eng. 2018;133:446–51.CrossRefGoogle Scholar
  6. 6.
    Yuan YP, Zhang N, Tao WQ, Cao XL, He YL. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.CrossRefGoogle Scholar
  7. 7.
    Abujas CR, Jove A, Prieto C, Gallas M, Cabeza LF. Performance comparison of a group of thermal conductivity enhancement methodology in phase change material for thermal storage application. Renew Energy. 2016;97:434–43.CrossRefGoogle Scholar
  8. 8.
    Fleming E, Wen SY, Shi L, da Silva AK. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. Int J Heat Mass Transf. 2015;82:273–81.CrossRefGoogle Scholar
  9. 9.
    Zhang XL, Chen XD, Zhao QZ, Ding L. The research on the dispersion effect improvement for nano-copper in erythritol. Mater Res Innov. 2015;19:9–13.CrossRefGoogle Scholar
  10. 10.
    Xu T, Li YT, Chen JY, Wu HJ, Zhou XQ, Zhang ZG. Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material. Appl Therm Eng. 2018;140:13–22.CrossRefGoogle Scholar
  11. 11.
    Barreneche C, Navarro ME, Fernandez AI, Cabeza LF. Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale. Appl Energy. 2013;109:428–32.CrossRefGoogle Scholar
  12. 12.
    Ke HZ, Cai YB, Wei QF, Xiao Y, Dong J, Hu Y, Song L, He GF, Zhao Y, Fong H. Electrospun ultrafine composite fibers of binary fatty acid eutectics and polyethylene terephthalate as innovative form-stable phase change materials for storage and release of thermal energy. Int J Energy Res. 2013;37:657–64.CrossRefGoogle Scholar
  13. 13.
    Zhong YJ, Guo QG, Li SZ, Shi JL, Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells. 2010;94:1011–4.CrossRefGoogle Scholar
  14. 14.
    Cheng F, Wen RL, Huang ZH, et al. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage. Appl Therm Eng. 2017;120:107–14.CrossRefGoogle Scholar
  15. 15.
    Huang X, Alva G, Liu LK, Fang GY. Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials. Appl Energy. 2017;200:19–27.CrossRefGoogle Scholar
  16. 16.
    Zou DQ, Ma XF, Liu XS, Zheng PJ, Hu YP. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int J Heat Mass Transf. 2018;120:33–41.CrossRefGoogle Scholar
  17. 17.
    Kinkelin C, Lips S, Soupremanien U, Remondière V, et al. Theoretical and experimental study of a thermal damper based on a CNT/PCM composite structure for transient electronic cooling. Energy Convers Manag. 2017;142:257–71.CrossRefGoogle Scholar
  18. 18.
    Atinafu DG, Dong WJ, Huang XB, Gao HY, Wang G. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Appl Energy. 2018;211:1203–15.CrossRefGoogle Scholar
  19. 19.
    Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater. 2017;29:27.Google Scholar
  20. 20.
    Huang X, Alva G, Liu LK, Fang GY. Preparation, characterization and thermal properties of fatty acid eutectics/bentonite/expanded graphite composites as novel form-stable thermal energy storage materials. Sol Energy Mater Sol Cells. 2017;166:157–66.CrossRefGoogle Scholar
  21. 21.
    Zhang H, Gao XN, Chen CX, et al. A capric-palmitic-stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos A Appl Sci Manuf. 2016;87:138–45.CrossRefGoogle Scholar
  22. 22.
    Jiang Z, Ouyang T, Yang Y, et al. Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network. Mater Des. 2018;143:177–84.CrossRefGoogle Scholar
  23. 23.
    He Y, Zhang X, Zhang YJ, et al. Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar. Energy Build. 2016;133:547–58.CrossRefGoogle Scholar
  24. 24.
    Yu HT, Gao JM, Chen Y, et al. Preparation and properties of stearic acid/expanded graphite composite phase change material for low-temperature solar thermal application. J Therm Anal Calorim. 2016;124:87–92.CrossRefGoogle Scholar
  25. 25.
    Yuan YP, Zhang N, Li TY, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study. Energy. 2016;97:488–97.CrossRefGoogle Scholar
  26. 26.
    Tian BQ, Yang WB, Luo LJ, et al. Synergistic enhancement of thermal conductivity for expanded graphite and carbon fiber in paraffin/EVA form-stable phase change materials. Sol Energy. 2016;127:48–55.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Gao Long 
    • 1
  • Sun Xuegeng 
    • 1
  • Sun Baizhong 
    • 1
    Email author
  • Che Deyong 
    • 1
  • Li Shaohua 
    • 1
  • Liu Zhongze 
    • 1
  1. 1.School of Energy and Power EngineeringNortheast Electric Power UniversityJilinChina

Personalised recommendations