Advertisement

Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets

  • Ting Gan
  • Tingzhen MingEmail author
  • Weijie Fang
  • Yang Liu
  • Lei MiaoEmail author
  • Kun Ren
  • Mohammad Hossein Ahmadi
Article
  • 8 Downloads

Abstract

With the rapid increasing heat fluxes released from micro electronic devices, thermal management of electric components faces huge challenge. High working temperature generated by the chip will directly affect its performance. It is essential to develop advanced model to enhance heat transfer. In this study, a new microchannel heat sinks with impinging jets and dimples (MHSIJD) model with side outlets was proposed. Computational fluid dynamics simulation methodology with RNG kε turbulence model was used to investigate the performance of MHSIJD with side outlets. Valuation indices including thermal capability, pump consumption and overall performance were analyzed. Three models were compared with basic model (MHSIJD without side outlets): the cross section of the side outlet was set as 0.2 × 0.2 mm (Case 1), 0.4 × 0.4 mm (Case 2), and 0.6 × 0.6 mm (Case 3). The results showed that: (1) the MHSIJD with side outlets performs better heat transfer characteristic due to the alleviation of drift phenomenon. The heat transfer capacity can be increased by up to 17.51%; (2) the MHSIJD with side outlets exhibits a lower pressure drop, which can be reduced up to 22.39%; and (3) the overall performance of MHSIJD with side outlets is better due to its higher cooling efficiency and lower pump consumption.

Keywords

Microchannel heat sink Heat transfer enhancement Side outlet Impinging jet Dimple 

List of symbols

C

Empirical constants 1.42

C

Empirical constants 1.68

Cμ

Empirical constants 0.085

Cp

Isobaric specific heat (J K−1 kg−1)

f

Acceleration of gravity (m s−2)

Gk

Turbulent kinetic energy caused by the average velocity gradient

H

Heat sink height (mm)

H1

Jet height (mm)

H2

Channel height (mm)

H3

Height of side outlet in cross section (mm)

h

Convective heat transfer coefficient (W m−2 K−1)

k

Turbulent kinetic energy

kf

Thermal conductivity of the fluid (W m−1 K−1)

L

Heat sink length (mm)

L1

Length of jet in cross section (mm)

L2

Spacing between jets (mm)

\(\overline{Nu}\)

Nusselt number (−)

P

Total pressure (Pa)

\(Pr_{\text{T}}\)

Turbulent Prandtl number

\(\hat{q}\)

Heat flux (W m−2)

R

Radius of dimple (mm)

Re

Reynolds number (−)

S

Deformation rate tensor

t

Time—for unsteady items (s)

T

Temperature (K)

u

Velocity (m s−1)

W

Heat sink width (mm)

W1

Channel width (mm)

x, y, z

Cartesian coordinates (−)

Greek symbols

αk

Inverse effective Prandtl numbers for k

αε

Inverse effective Prandtl numbers for ε

β

Volume coefficient of expansion (1 K−1)

δ

Kronecker delta

ε

Turbulent dissipation rate

μ

Dynamic viscosity (Pa s)

μt

Turbulent viscosity

τ

Thear stress caused by viscosity (N m−2)

ρ

Density (kg m−3)

ΔP

Pressure drop (Pa)

Subscripts

f

Fluid

in

Impinging jet inlet

out

Channel outlet

i, j

Any direction of x, y and z

w

Cooled surface

\(\bar{a}\)

Time average of a

T

Temperature

Notes

Acknowledgements

This study is financially supported by the National Natural Science Foundation of China (Grant No. 51778511), the Hubei Provincial Natural Science Foundation of China (Grant No. 2018CFA029), and the Key Project of ESI Discipline Development of Wuhan University of Technology (WUT Grant No. 2017001).

References

  1. 1.
    Guo ZY. The frontier of international heat transfer research—fine-scale heat transfer. Adv Mech. 2000;30(1):1–6.Google Scholar
  2. 2.
    Dewan A, Srivastava P. A review of heat transfer enhancement through flow disruption in a microchannel. J Therm Sci. 2015;24(3):203–14.CrossRefGoogle Scholar
  3. 3.
    Liou TM, Wei TC, Wang CS. Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method. J Therm Anal Calorim. 2019;135(1):751–62.CrossRefGoogle Scholar
  4. 4.
    Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2(5):126–9.CrossRefGoogle Scholar
  5. 5.
    Drummond KP, Doosan B, Sinanis MD, Janes DB, Peroulis D, Weibel JA, Garimella SV. Characterization of hierarchical manifold microchannel heat sink arrays under simultaneous background and hotspot heating conditions. Int J Heat Mass Transf. 2018;126:1289–301.CrossRefGoogle Scholar
  6. 6.
    Li P, Luo Y, Zhang D, Xie YH. Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin. Int J Heat Mass Transf. 2018;119:152–62.CrossRefGoogle Scholar
  7. 7.
    Alipour Lalami A, Hassanzadeh Afrouzi H, Moshfegh A. Investigation of MHD effect on nanofluid heat transfer in microchannels. J Therm Anal Calorim. 2019;136(5):1959–75.CrossRefGoogle Scholar
  8. 8.
    Manay E, Mandev E. Experimental investigation of mixed convection heat transfer of nanofluids in a circular microchannel with different inclination angles. J Therm Anal Calorim. 2019;135(2):887–900.  https://doi.org/10.1007/s10973-018-7463-9.CrossRefGoogle Scholar
  9. 9.
    Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019;136:1333–45.CrossRefGoogle Scholar
  10. 10.
    Guthrie DGP, Torabi M, Karimi N. Energetic and entropic analyses of double-diffusive, forced convection heat and mass transfer in microreactors assisted with nanofluid. J Therm Anal Calorim. 2019;137(2):637–58.  https://doi.org/10.1007/s10973-018-7959-3.CrossRefGoogle Scholar
  11. 11.
    Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2017;131(5):1–10.Google Scholar
  12. 12.
    Liou TM, Wei TC, Wang CS. Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method. J Therm Anal Calorim. 2019;135(1):751–62.CrossRefGoogle Scholar
  13. 13.
    Heydari A, Akbari OA, Safaei MR, Derakhshani M, Alrashed AAAA, Mashayekhi R, Shabani GAS, Zarringhalam M, Nguyen TK. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–913.CrossRefGoogle Scholar
  14. 14.
    Akbari OA, Khodabandeh E, Kahbandeh F, Toghraie D, Khalili M. Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08227-3.Google Scholar
  15. 15.
    Mohammadi M, Abadeh A, Reza NF, Mohammad PF. An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08167-y.Google Scholar
  16. 16.
    Abazar A, Majid M, Mohammad PF. Experimental investigation on heat transfer enhancement for a ferrofluid in a helically coiled pipe under constant magnetic field. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7478-2.Google Scholar
  17. 17.
    Li J, Peterson GP, Cheng P. Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf. 2004;47(19):4215–31.CrossRefGoogle Scholar
  18. 18.
    Wu HY, Cheng P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions. Int J Heat Mass Transf. 2003;46(14):2547–56.CrossRefGoogle Scholar
  19. 19.
    Li Z, Tao WQ, He YL. A numerical study of laminar convective heat transfer in microchannel with non-circular cross-section. Int J Therm Sci. 2006;45(12):1140–8.CrossRefGoogle Scholar
  20. 20.
    Chen Y, Zhang C, Shi M, Wu J. Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks. Int Commun Heat Mass Transf. 2009;36(9):917–20.CrossRefGoogle Scholar
  21. 21.
    Gunnasegaran P, Mohammed HA, Shuaib NH, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf. 2010;37(8):1078–86.CrossRefGoogle Scholar
  22. 22.
    Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng. 2016;107:870–9.CrossRefGoogle Scholar
  23. 23.
    Xie XL, Liu ZJ, He YL, Tao WQ. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Appl Therm Eng. 2009;29(1):64–74.CrossRefGoogle Scholar
  24. 24.
    Cao H, Chen G. Optimization design of microchannel heat sink geometry for high power laser mirror. Appl Therm Eng. 2010;30(13):1644–51.CrossRefGoogle Scholar
  25. 25.
    Utriainen E, Sundén B. Numerical analysis of a primary surface trapezoidal cross wavy duct. Int J Numer Methods Heat Fluid Flow. 2000;10(6):634–48.CrossRefGoogle Scholar
  26. 26.
    Mohammed HA, Gunnasegaran P, Shuaib NH. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int Commun Heat Mass Transf. 2011;38(1):63–8.CrossRefGoogle Scholar
  27. 27.
    Gong L, Kota K, Tao W, Joshi Y. Parametric numerical study of flow and heat transfer in microchannels with wavy walls. J Heat Transf Trans ASME. 2011;133(5):746.CrossRefGoogle Scholar
  28. 28.
    Lee DY, Vafai K. Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. Int J Heat Mass Transf. 1999;42(9):1555–68.CrossRefGoogle Scholar
  29. 29.
    Ming TZ, Ding Y, Gui JL, Tao YX. Transient thermal behavior of a microchannel heat sink with multiple impinging jets. J Zhejiang Universityence A. 2015;16(11):894–909.CrossRefGoogle Scholar
  30. 30.
    Sung MK, Mudawar I. Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module. Int J Heat Mass Transf. 2008;51(15):3825–39.CrossRefGoogle Scholar
  31. 31.
    Sung MK, Mudawar I. Effects of jet pattern on two-phase performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme. Int J Heat Mass Transf. 2009;52(13):3364–72.CrossRefGoogle Scholar
  32. 32.
    Sung MK, Mudawar I. CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement. Int J Heat Mass Transf. 2009;52(3):610–9.CrossRefGoogle Scholar
  33. 33.
    Jang SP, Kim SJ, Paik KW. Experimental investigation of thermal characteristics for a microchannel heat sink subject to an impinging jet, using a micro-thermal sensor array. Sens Actuators, A. 2003;105(2):211–24.CrossRefGoogle Scholar
  34. 34.
    Shafeie H, Abouali O, Jafarpur K, Ahmadi G. Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures. Appl Therm Eng. 2013;58(1–2):68–76.CrossRefGoogle Scholar
  35. 35.
    Mishra C, Peles Y. Laminar flow across a bank of low aspect ratio micro pin fins. J Fluids Eng. 2005;127(3):419–30.CrossRefGoogle Scholar
  36. 36.
    Jin Z, Huang S, Liang G, Huang Z. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl Therm Eng. 2016;93:1347–59.CrossRefGoogle Scholar
  37. 37.
    Hua J, Li G, Zhao X, Li Q, Hu J. Study on the flow resistance performance of fluid cross various shapes of micro-scale pin fin. Appl Therm Eng. 2016;107:768–75.CrossRefGoogle Scholar
  38. 38.
    Hong F, Cheng P. Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks. Int Commun Heat Mass Transf. 2009;36(7):651–6.CrossRefGoogle Scholar
  39. 39.
    Moores KA, Kim J, Joshi YK. Heat transfer and fluid flow in shrouded pin fin arrays with and without tip clearance. Int J Heat Mass Transf. 2009;52(25):5978–89.CrossRefGoogle Scholar
  40. 40.
    Reyes M, Arias JR, Velazquez A, Vega JM. Experimental study of heat transfer and pressure drop in micro-channel based heat sinks with tip clearance. Appl Therm Eng. 2011;31(5):887–93.CrossRefGoogle Scholar
  41. 41.
    Mei D, Lou X, Miao Q, Yao Z, Liang L, Chen Z. Effect of tip clearance on the heat transfer and pressure drop performance in the micro-reactor with micro-pin-fin arrays at low Reynolds number. Int J Heat Mass Transf. 2014;70(2):709–18.CrossRefGoogle Scholar
  42. 42.
    Liu W, Liu P, Wang JB, Zheng NB, Liu ZC. Exergy destruction minimization: a principle to convective heat transfer enhancement. Int J Heat Mass Transf. 2018;122:11–21.CrossRefGoogle Scholar
  43. 43.
    Xu M, Lu H, Gong L, Chai JC, Duan X. Parametric numerical study of the flow and heat transfer in microchannel with dimples. Int Commun Heat Mass Transf. 2016;76(5):348–57.CrossRefGoogle Scholar
  44. 44.
    Lan J, Xie Y, Zhang D. Flow and heat transfer in microchannels with dimples and protrusions. J Heat Transf Trans ASME. 2012;134(2):021901.CrossRefGoogle Scholar
  45. 45.
    Bi C, Tang GH, Tao WQ. Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Appl Therm Eng. 2013;55(1–2):121–32.CrossRefGoogle Scholar
  46. 46.
    Li P, Zhang D, Xie Y. Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion. Int J Heat Mass Transf. 2014;73(73):456–67.CrossRefGoogle Scholar
  47. 47.
    Li P, Xie Y, Zhang D, Xie G. Heat transfer enhancement and entropy generation of nanofluids laminar convection in microchannels with flow control devices. Entropy. 2016;18(4):134.CrossRefGoogle Scholar
  48. 48.
    Li P, Zhang D, Xie Y, Xie G. Flow structure and heat transfer of non-Newtonian fluids in microchannel heat sinks with dimples and protrusions. Appl Therm Eng. 2016;94:50–8.CrossRefGoogle Scholar
  49. 49.
    Chang SW, Chiou SF, Chang SF. Heat transfer of impinging jet array over concave-dimpled surface with applications to cooling of electronic chipsets. Exp Thermal Fluid Sci. 2007;31(7):625–40.CrossRefGoogle Scholar
  50. 50.
    Kanokjaruvijit K, Martinezbotas RF. Parametric effects on heat transfer of impingement on dimpled surface. J Turbomach. 2005;127(2):77–88.CrossRefGoogle Scholar
  51. 51.
    Huang X, Yang W, Ming T, Shen W, Yu X. Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. Int J Heat Mass Transf. 2017;112:113–24.CrossRefGoogle Scholar
  52. 52.
    Ming T, Cai C, Yang W, Shen W, Feng W, Zhou N. optimization of dimples in microchannel heat sink with impinging jets-part B: the influences of dimple height and arrangement. J Therm Sci. 2018;14:1–10.Google Scholar
  53. 53.
    Ming T, Cai C, Yang W, Shen W, Gan T. Optimization of dimples in microchannel heat sink with impinging jets-part A: mathematical model and the influence of dimple radius. J Therm Sci. 2018;27(3):195–202.CrossRefGoogle Scholar
  54. 54.
    Ming T, Peng C, Gui J, Tao Y. Analysis on the hydraulic and thermal performances of a microchannel heat sink with extended-nozzle impinging jets. Heat Transf Res. 2016;48(10):893–914.CrossRefGoogle Scholar
  55. 55.
    Li CG, Zhou JM. Experimental and numerical simulation study of heat transfer due to confined impinging circular jet. Chem Eng Technol. 2010;30(11):1355–61.Google Scholar
  56. 56.
    El-Gabry LA, Kaminski DA. Experimental investigation of local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets. J Turbomach Trans ASME. 2005;127(3):532–44.  https://doi.org/10.1115/1.1861918.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Civil Engineering and ArchitectureWuhan University of TechnologyWuhanChina
  2. 2.Institute of Electric PowerNorth China University of Water Resources and Electric PowerZhengzhouChina
  3. 3.Mechanical EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations