Advertisement

Thermal stability and flame retardant properties of calcium- and magnesium-hypophosphite-finished cotton fabrics and the evaluation of interaction with clay and POSS nanoparticles

  • Serife Furtana
  • Aysenur Mutlu
  • Mehmet DoganEmail author
Article
  • 8 Downloads

Abstract

The aim of this study was to investigate the effect of calcium hypophosphite (CaHP) and magnesium hypophosphite (MgHP) on the thermal stability and fire retardant properties of cotton fabrics. The effects of water-soluble nanoparticles, namely Na-montmorillonite and octaammonium polyhedral oligomeric silsesquioxane (OA-POSS), in the presence of CaHP were also investigated. The characterizations of flame-retardant-treated cotton fabrics were performed using thermogravimetric analysis, limiting oxygen index (LOI) and mass loss calorimeter studies. The residues remained after mass loss calorimeter test were characterized by conducting attenuated total reflectance Fourier-transform infrared spectroscopy and scanning electron microscopy with a wavelength-dispersive X-ray spectrometer. The results showed that the fire performance of cotton fabric increased as the treated amount of both hypophosphite compounds increased. CaHP showed better fire performance than MgHP. The fire retardant performance of CaHP was further improved when used with nanoparticles. The highest LOI value of 24.2 and the lowest peak heat release rate (PHRR) of 43 ± 3 kW m−2 were achieved with the use of CaHP and OA-POSS at a ratio of 19:1.

Keywords

Cotton Flame retardant Hypophosphites Na-montmorillonite Polyhedral oligomeric silsesquioxane 

Notes

References

  1. 1.
    Weil ED, Levchik SV. Practical applications, flame retardants for plastics and textiles. Munich: Hanser Publisher; 2009. p. 978–83.CrossRefGoogle Scholar
  2. 2.
    Bourbigot S, Duquesne S, Wilkie CA, Morgan AB. Fire retardancy of polymeric materials. Boca Raton: CRC Press; 2010.Google Scholar
  3. 3.
    Chen Z, Dong C, Li Q, Bai Y, Lu Z. Preparation of linear piperazine/phosphorous/polysiloxane copolymer and its application on cotton fabrics. J Therm Anal Calorim. 2017;130(3):1997–2005.CrossRefGoogle Scholar
  4. 4.
    Dong C, Lu Z, Wang P, Zhu P, Li X, Sui S, Zhang L, Liu J. Flammability and thermal properties of cotton fabrics modified with a novel flame retardant containing triazine and phosphorus components. Text Res J. 2017;87(11):1367–76.CrossRefGoogle Scholar
  5. 5.
    Feng Y, Zhou Y, Li D, He S, Zhang F, Zhang G. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohyd Polym. 2017;175:636–44.CrossRefGoogle Scholar
  6. 6.
    Jia Y, Hu Y, Zheng D, Zhang G, Zhang F, Liang Y. Synthesis and evaluation of an efficient, durable, and environmentally friendly flame retardant for cotton. Cellulose. 2017;24(2):1159–70.CrossRefGoogle Scholar
  7. 7.
    Jiang D, Sun C, Zhou Y, Wang H, Yan X, He Q, Guo J, Guo Z. Enhanced flame retardancy of cotton fabrics with a novel intumescent flame-retardant finishing system. Fibers Polym. 2015;16(2):388–96.CrossRefGoogle Scholar
  8. 8.
    Liu X, Zhang Q, Cheng B, Ren Y, Zhang Y, Ding C. Durable flame retardant cellulosic fibers modified with novel, facile and efficient phytic acid-based finishing agent. Cellulose. 2018;25(1):799–811.CrossRefGoogle Scholar
  9. 9.
    Liu Z, Xu M, Wang Q, Li B. A novel durable flame retardant cotton fabric produced by surface chemical grafting of phosphorus-and nitrogen-containing compounds. Cellulose. 2017;24(9):4069–81.CrossRefGoogle Scholar
  10. 10.
    Rosace G, Colleoni C, Trovato V, Iacono G, Malucelli G. Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric. Cellulose. 2017;24(7):3095–108.CrossRefGoogle Scholar
  11. 11.
    Shariatinia Z, Javeri N, Shekarriz S. Flame retardant cotton fibers produced using novel synthesized halogen-free phosphoramide nanoparticles. Carbohyd Polym. 2015;118:183–98.CrossRefGoogle Scholar
  12. 12.
    Wang S, Sui X, Li Y, Li J, Xu H, Zhong Y, Zhang L, Mao Z. Durable flame retardant finishing of cotton fabrics with organosilicon functionalized cyclotriphosphazene. Polym Degrad Stab. 2016;128:22–8.CrossRefGoogle Scholar
  13. 13.
    Xu L, Wang W, Yu D. Preparation of a reactive flame retardant and its finishing on cotton fabrics based on click chemistry. RSC Adv. 2017;7:2044–50.CrossRefGoogle Scholar
  14. 14.
    Zhao B, Liu YT, Zhang CY, Liu DY, Li F, Liu YQ. A novel phosphoramidate and its application on cotton fabrics: synthesis, flammability and thermal degradation. J Anal Appl Pyrol. 2017;125:109–16.CrossRefGoogle Scholar
  15. 15.
    Zheng D, Zhou J, Wang Y, Zhang F, Zhang G. A reactive flame retardant ammonium salt of diethylenetriaminepenta (methylene-phosphonic acid) for enhancing flame retardancy of cotton fabrics. Cellulose. 2018;25(1):787–97.CrossRefGoogle Scholar
  16. 16.
    Zheng D, Zhou J, Zhong L, Zhang F, Zhang G. A novel durable and high-phosphorous-containing flame retardant for cotton fabrics. Cellulose. 2016;23(3):2211–20.CrossRefGoogle Scholar
  17. 17.
    Zhou L, Liang Z, Li R, Huang D, Ren X. Flame-retardant treatment of cotton fabric with organophosphorus derivative containing nitrogen and silicon. J Therm Anal Calorim. 2017;128(2):653–60.CrossRefGoogle Scholar
  18. 18.
    Zope IS, Foo S, Seah DGJ, Akunuri AT, Dasari A. Development and evaluation of a water-based flame retardant spray coating for cotton fabrics. ACS Appl Mater Interfaces. 2017;9:40782–91.CrossRefGoogle Scholar
  19. 19.
    Wu N, Li X. Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stab. 2014;105:265–76.CrossRefGoogle Scholar
  20. 20.
    Li Q, Li B, Zhang S, Lin M. Investigation on effects of aluminum and magnesium hypophosphites on flame retardancy and thermal degradation of polyamide 6. J Appl Polym Sci. 2012;125:1782–9.CrossRefGoogle Scholar
  21. 21.
    Jian RK, Chen L, Zhao B, Yan YW, Li XF, Wang YZ. Acrylonitrile–butadiene–styrene terpolymer with metal hypophosphites: flame retardance and mechanism research. Ind Eng Chem Res. 2014;53:2299–307.CrossRefGoogle Scholar
  22. 22.
    Tang G, Huang X, Ding H, Wang X, Jiang S, Zhou K, Wang B, Yang W, Hu Y. Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite. RSC Adv. 2014;4:8985–93.CrossRefGoogle Scholar
  23. 23.
    Cheng X, Yang CQ. Flame retardant finishing of cotton fleece fabric: part V. Phosphorus-containing maleic acid oligomers. Fire Mater. 2009;33:365–75.CrossRefGoogle Scholar
  24. 24.
    Lessan F, Montazer M, Moghadam MB. A novel durable flame-retardant cotton fabric using sodium hypophosphite, nano TiO2 and maleic acid. Thermochim Acta. 2011;520:48–54.CrossRefGoogle Scholar
  25. 25.
    Wu X, Yang CQ. Flame retardant finishing of cotton fleece fabric: part III—the combination of maleic acid and sodium hypophosphite. J Fire Sci. 2008;26:351–68.CrossRefGoogle Scholar
  26. 26.
    Yang CQ, Wu W. Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton: part II. Formation of calcium salt during laundering. Fire Mater. 2003;27:239–51.CrossRefGoogle Scholar
  27. 27.
    Yang CQ, He Q, Voncina B. Cross-linking cotton cellulose by the combination of maleic acid and sodium hypophosphite. 2. Fabric fire performance. Ind Eng Chem Res. 2011;50:5889–97.CrossRefGoogle Scholar
  28. 28.
    Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. 2010;35:902–58.CrossRefGoogle Scholar
  29. 29.
    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois Ph. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R. 2009;63:100–25.CrossRefGoogle Scholar
  30. 30.
    He H, Tao Q, Zhu J, Yuan P, Shem W, Yang S. Silylation of clay mineral surfaces. Appl Clay Sci. 2013;71:15–20.CrossRefGoogle Scholar
  31. 31.
    Romanzini D, Piroli V, Frache A, Zattera AJ, Amico SC. Sodium montmorillonite modified with methacryloxy and vinylsilanes: influence of silylation on them morphology of clay/unsaturated polyester nanocomposites. Appl Clay Sci. 2015;114:550–7.CrossRefGoogle Scholar
  32. 32.
    Turgut G, Dogan M, Tayfun U, Ozkoc G. The effects of POSS particles on the flame retardancy of intumescent polypropylene composites and the structure-property relationship. Polym Degrad Stab. 2018;149:96–111.CrossRefGoogle Scholar
  33. 33.
    Fang F, Chen X, Zhang X, Cheng C, Xiao D, Meng Y, Ding X, Zhang H, Tian X. Environmentally friendly assembly multilayer coating for flame retardant and antimicrobial cotton fabric. Prog Org Coat. 2016;90:258–66.CrossRefGoogle Scholar
  34. 34.
    Liu Y, Pan YT, Wang X, Acuna P, Zhu P, Wagenknecht U, Heinrich G, Zhang XQ, Wang R, Wang DY. Effect of phosphorus containing inorganic organic hybrid coating on the flammability of cotton fabrics: synthesis, characterization and flammability. Chem Eng J. 2016;294:167–75.CrossRefGoogle Scholar
  35. 35.
    Shen D, Xiao R, Gu S, Luo K. The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Adv. 2011;1:1641–60.CrossRefGoogle Scholar
  36. 36.
    Zhao B, Chen L, Long JW, Chen HB, Wang YZ. Aluminum hypophosphite versus alkyl-substituted phosphinate in polyamide 6: flame retardance, thermal degradation, and pyrolysis behavior. Ind Eng Chem Res. 2013;52:2875–86.CrossRefGoogle Scholar
  37. 37.
    Illy N, Fache M, Menard R, Negrell C, Caillol S, David G. Phosphorylation of bio-based compounds: state of the art. Polym Chem. 2015;6:6257–91.CrossRefGoogle Scholar
  38. 38.
    Yuan B, Bao C, Guo Y, Song L, Liew KM, Hu Y. Preparation and characterization of flame retardant aluminum hypophosphite/poly (vinyl alcohol) composite. Ind Eng Chem Res. 2012;51:14065–75.CrossRefGoogle Scholar
  39. 39.
    Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM. Formation of self-extinguishing flame retardant biobased coating on cotton fabrics via layer by layer assembly of chitin derivatives. Carbohyd Polym. 2015;115:516–24.CrossRefGoogle Scholar
  40. 40.
    Xiao S, Chen M, Dong L, Deng C, Chen L, Wang Y. Thermal degradation, flame retardancy and mechanical properties of thermoplastic polyurethane composites based on aluminum hypophosphite. Chin J Polym Sci. 2014;32:98–107.CrossRefGoogle Scholar
  41. 41.
    Dong C, Lu Z, Zhu P, Zhang F, Zhang X. Combustion behaviors of cotton fabrics treated by a novel guanidyl and phosphorus containing polysiloxane flame retardant. J Therm Anal Calorim. 2015;119:349–57.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Textile EngineeringErciyes UniversityKayseriTurkey

Personalised recommendations