Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 2043–2055 | Cite as

The effect of TiO2 particles on thermal properties of polycarbonate-based polyurethane nanocomposite films

  • Jelena Pavličević
  • Milena Špírková
  • Ayse Aroguz
  • Mirjana Jovičić
  • Dejan Kojić
  • Dragan Govedarica
  • Bojana IkonićEmail author
Article

Abstract

In this work, aliphatic starting reactants were used to prepare a series of polycarbonate-based polyurethane (PC-PU) nanocomposite films with a low amount of titanium dioxide (TiO2) nanoparticles (0.5, 1.0 and 2.0%) by one-step technique. The influence of nanoparticles on the structure and hydrogen bonding, as well as the microphase and topography of the obtained hybrid materials was followed by Fourier transform infrared spectroscopy, Atomic force microscopy and Scanning electron microscopy coupled with energy-dispersive X-ray Spectroscopy, respectively. Thermogravimetry was performed to study the effect of TiO2 on the thermal stability and the decomposition pattern of the obtained PC-PU films. The impact of TiO2 on the glass transition temperature, relaxation of soft domains as well as the melting of hard segments was determined by modulated differential scanning calorimetry. The significant enhancement of thermal stability and degradation of prepared hybrid materials were achieved, due to increased hydrogen bonding by addition of TiO2. The glass transition temperatures of all PC-PU films were found independent on the titanium dioxide mass fraction. The starting of physical cross-linking disruption of the obtained hybrids was registered at significantly higher temperatures, as a consequence of the achieved interaction between uniformly dispersed TiO2 nanoparticles and hard phase.

Keywords

Polycarbonate-based polyurethane hybrid film TiO2 nanoparticles hydrogen bonding TG/DTG MDSC 

Notes

Acknowledgements

The authors wish to thank for the financial supports of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. III45022) and of the Czech Science Foundation, Project No. 18-03932S. The authors would also like to acknowledge to Dr. Sabina Krejčíková and Dr. Magdalena Konefał from Institute of Macromolecular Chemistry AS CR in Prague for additional analyses.

References

  1. 1.
    Kapica-Kozar J, Piróg E, Wrobel RJ, Mozia S, Kusiak-Nejman E, Morawski AW, Narkievicz U, Michalkiewicz B. TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Microporous Mesoporous Mater. 2016;231:117–27.CrossRefGoogle Scholar
  2. 2.
    Dahl M, Liu YD, Yin YD. Composite titanium dioxide nanomaterials. Chem Rev. 2014;114:9853–89.CrossRefGoogle Scholar
  3. 3.
    da Silva VD, dos Santos JM, Subda SM, Ligabue R, Seferin M, Carone CL, Einloft S. Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull. 2013;70:1819–33.CrossRefGoogle Scholar
  4. 4.
    Dastan D, Chaure NB. Influence of surfactants on TiO2 nanoparticles grown by sol–gel technique. J Mater Mech Manuf. 2014;2:21–4.Google Scholar
  5. 5.
    Drnovšek N, Rade K, Milačič R, Štrancar J, Novak S. The properties of bioactive TiO2 coatings on Ti-based implants. Surf Coat Technol. 2012;209:177–83.CrossRefGoogle Scholar
  6. 6.
    Brammer KS, Frandsen CJ, Sungho J. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22.CrossRefGoogle Scholar
  7. 7.
    Sawant VJ, Kupwade RV. Functionalization of TiO2 nanoparticles and curcumin loading for enhancement of biological activity. Der Pharm Lett. 2015;7:37–44.Google Scholar
  8. 8.
    Holló BB, Ristić I, Budinski-Simendić J, Cakić S, Szilágyi IM, Szécsényi KM. Synthesis, spectroscopic and thermal characterization of new metal-containing isocyanate-based polymers. J Therm Anal Calorim. 2018;132:215–24.CrossRefGoogle Scholar
  9. 9.
    Ristić IS, Bjelović ZD, Holló B, Szécsényi KM, Budinski-Simendić J, Lazić N, Kićanović M. Thermal stability of polyurethane materials based on castor oil as polyol component. J Therm Anal Calorim. 2012;111:1083–91.CrossRefGoogle Scholar
  10. 10.
    Koo JH. Polymer nanocomposites. New York: McGraw-Hill, Professional Pub; 2006.Google Scholar
  11. 11.
    Wei X, Liu J. Nanocuboid TiO2 based organic-inorganic hybrids for fast RhB trapping and photodegradation. Sol Energy Mater Sol Cells. 2016;157:139–45.CrossRefGoogle Scholar
  12. 12.
    Oh SY, Kang MS, Knowles JC, Gong MS. Synthesis of bio-based thermoplastic polyurethane elastomers containing isosorbide and polycarbonate diol and their biocompatible properties. J Biomater Appl. 2015;30:327–64.CrossRefGoogle Scholar
  13. 13.
    Špírková M, Machová L, Kobera L, Brus J, Poręba R, Serkis M, Zhigunov A. Multiscale approach to the morphology, structure, and segmental dynamics of complex degradable aliphatic polyurethanes. J Appl Polym Sci. 2015;132:41590–601.CrossRefGoogle Scholar
  14. 14.
    Cipriani E, Bracco P, Kurtz SM, Costa L, Zanetti M. In-vivo degradation of poly (carbonate-urethane) based spine implants. Polym Degrad Stab. 2013;98:1225–35.CrossRefGoogle Scholar
  15. 15.
    Osman AF, Edwards GA, Schiller TL, Andriani Y, Jack KS, Isabel C, Morrow IC, Peter J, Halley PJ, Darren J, Martin DJ. Structure–property relationships in biomedical thermoplastic polyurethane nanocomposites. Macromolecules. 2011;45:198–210.CrossRefGoogle Scholar
  16. 16.
    Chen QZ, Liang LZ, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci. 2013;38:584–671.CrossRefGoogle Scholar
  17. 17.
    Fernández-d’Arlas B, Alonso-Varona A, Palomares T, Corcuera MA, Eceiza A. Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polym Degrad Stab. 2015;122:153–60.CrossRefGoogle Scholar
  18. 18.
    Fernández-d Arlas B, González I, Eceiza A. Hacia la mímesis de la seda de araña a partir de poliuretanos con segmentos cortos de unidades rígidas y semiflexibles. Rev Lat Am Metal Mater. 2015;35:39–48.Google Scholar
  19. 19.
    Mothé CG, de Araujo CR, Wang SH. Thermal and mechanical characteristics of polyurethane/curaua fiber composites. J Therm Anal Calorim. 2009;95:181–5.CrossRefGoogle Scholar
  20. 20.
    Klinedinst DB, Yilgör I, Yilgör E, Zhang M, Wilkes GL. The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1, 4-butanediol and PTMO soft segments. Polymer. 2012;53:5358–66.CrossRefGoogle Scholar
  21. 21.
    Sheng D, Tan J, Liu X, Wang P, Yang Y. Effect of organoclay with various organic modifiers on the morphological, mechanical, and gas barrier properties of thermoplastic polyurethane/organoclay nanocomposites. J Mater Sci. 2011;46:6508–17.CrossRefGoogle Scholar
  22. 22.
    Pavličević J, Špírková M, Jovičić M, Bera O, Poręba R, Budinski-Simendić J. The structure and thermal properties of novel polyurethane/organoclay nanocomposites obtained by pre-polymerization. Compos Part B Eng. 2013;45:232–8.CrossRefGoogle Scholar
  23. 23.
    Kim KT, Dao TD, Jeong HM, Anjanapura RV, Aminabhavi TM. Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Mater Chem Phys. 2015;153:291–300.CrossRefGoogle Scholar
  24. 24.
    Kathalewar M, Sabnis A, Waghoo G. Effect of incorporation of surface treated zinc oxide on non-isocyanate polyurethane based nano-composite coatings. Prog Org Coat. 2013;76:1215–29.CrossRefGoogle Scholar
  25. 25.
    Pavličević J, Špírková M, Bera O, Jovičić M, Pilić B, Baloš S, Budinski-Simendić J. The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Compos Part B Eng. 2014;60:673–9.CrossRefGoogle Scholar
  26. 26.
    Špírková M, Duszová A, Poręba R, Kredatusová J, Bureš R, Fáberová M, Šlouf M. Thermoplastic polybutadiene-based polyurethane/carbon nanofiber composites. Compos Part B Eng. 2014;67:434–40.CrossRefGoogle Scholar
  27. 27.
    Reid DL, Draper R, Richardson D, Demko A, Allen T, Petersen EL, Seal S. In situ synthesis of polyurethane–TiO2 nanocomposite and performance in solid propellants. J Mater Chem A. 2014;2:2313–22.CrossRefGoogle Scholar
  28. 28.
    Chen C, Wu W, Xu WZ, Charpentier PA. The effect of silica thickness on nano TiO2 particles for functional polyurethane nanocomposites. Nanotechnology. 2017;28:115709–23.CrossRefGoogle Scholar
  29. 29.
    Chen X, Wang W, Li S, Qian Y, Jiao C. Synthesis of TPU/TiO2 nanocomposites by molten blending method. J Therm Anal Calorim. 2018;132:793–803.CrossRefGoogle Scholar
  30. 30.
    Zebarjad SM, Sajjadi SA, Raoofian I. Effect of nano size TiO2 on morphology of polyurethane/TiO2 nanocomposites. In: 2nd international conference on nanomechanics and nanocomposites, 10–13 Oct 2010, Beijing; 2010Google Scholar
  31. 31.
    Bikiaris D. Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim Acta. 2011;523:25–45.CrossRefGoogle Scholar
  32. 32.
    Shufen L, Zhi J, Kaijun Y, Shuqin Y, Chow WK. Studies on the thermal behavior of polyurethanes. Polym Plast Technol Eng. 2006;45:95–108.CrossRefGoogle Scholar
  33. 33.
    Špírková M, Pavličević J, Strachota A, Poręba R, Bera O, Kaprálková L, Baldrian J, Šlouf M, Lazić N, Budinski-Simendić J. Novel polycarbonate-based polyurethane elastomers: composition–property relationship. Eur Polym J. 2011;47:959–72.CrossRefGoogle Scholar
  34. 34.
    Špírková M, Poręba R, Pavličević J, Kobera L, Baldrian J, Pekárek M. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. I. The influence of hard-segment content and macrodiol-constitution on bottom-up self-assembly. J Appl Polym Sci. 2012;126:1016–30.CrossRefGoogle Scholar
  35. 35.
    Polizos G, Tuncer E, Agapov AL, Stevens D, Sokolov AP, Kidder MK, Jacobs JD, Koerner H, Vaia RA, More KL, Sauers I. Effect of polymer–nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. Polymer. 2012;53:595–603.CrossRefGoogle Scholar
  36. 36.
    Seymour RW, Estes GM, Cooper SL. Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromolecules. 1970;3:579–83.CrossRefGoogle Scholar
  37. 37.
    Bajsić Govorčin E, Rek V. Thermal stability of polyurethane elastomers before and after UV irradiation. J Appl Polym Sci. 2001;79:864–73.CrossRefGoogle Scholar
  38. 38.
    Poręba R, Špirková M, Pavličević J, Budinski-Simendić J, Szécsényi M, Holló B. Aliphatic polycarbonate-based polyurethane nanostructured materials. The influence of the composition on thermal stability and degradation. Compos Part B Eng. 2014;58:496–501.CrossRefGoogle Scholar
  39. 39.
    Poręba R, Špírková M, Brožová L, Lazić N, Pavličević J, Strachota A. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties. J Appl Polym Sci. 2013;127:329–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of Technology Novi SadUniversity of Novi SadNovi SadSerbia
  2. 2.Institute of Macromolecular Chemistry AS CR v.v.iPragueCzech Republic
  3. 3.Engineering FacultyIstanbul University-CerrahpasaIstanbulTurkey

Personalised recommendations