Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3765–3779 | Cite as

Thermal characterization of antimicrobial peptide stigmurin employing thermal analytical techniques

  • Dayanne Lopes Porto
  • Geovana Quixabeira Leite
  • Antonio Rodrigo Rodriges Da Silva
  • Augusto Lopes Souto
  • Ana Paula Barreto Gomes
  • Fábio Santos de Souza
  • Rui Oliveira Macêdo
  • Renata Mendonça Araújo
  • Éder Tadeu Gomes Cavalheiro
  • Matheus de Freitas Fernandes Pedrosa
  • Cícero Flávio Soares AragãoEmail author
Article
  • 115 Downloads

Abstract

Stigmurin is a peptide with amidated C-terminus (FFSLIPSLVGGLISAFK-NH2) identified in the transcriptome of the scorpion Tityus stigmurus that has shown antimicrobial action against methicillin-resistant pathogens and low antihemolytic activity, and recently proved to be efficient in controlling sepsis. Despite its pharmacological potential, there is no report about thermal studies for the characterization of the amorphous solid. The objective of this work is to characterize stigmurin using thermoanalytical techniques in the solid state in an inert and oxidative atmosphere. Stigmurin presents glass transition temperature at 149 °C. The results of TG–FTIR and pyrolysis suggest that the pathways for decomposition include homolytic breakdown of the side chains of amino acid residues. Decomposition possibly begins at the N-terminus, with formation of the aromatic compounds, amines, nitriles, alcohols, and ethers among others followed by defragmentation reactions (mainly decarboxylation and deamination) and intramolecular condensation reactions. It generates compounds similar to 2,5-diketopiperazine or DKP, and releases water and low molecular mass products (CO2, NH3, CO, HCNO). The decomposition of stigmurin is an endothermic process where the product of decomposition is originated in the liquid state according to DSC-photovisual images. Stigmurin is more stable in nitrogen atmosphere than synthetic air. This approach provides important information about the thermal decomposition of stigmurin, a molecule endowed with potent antimicrobial activity, supplying relevant parameters (temperature, degradation products, etc.) for technological strategies focusing on quality control and development studies of preformulation involving stigmurin and synthetic peptides in general.

Keywords

Stigmurin Antimicrobial peptide Scorpion Thermal decomposition Volatile residues Pyrolysis 

Notes

Acknowledgements

The authors acknowledge financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES), Rio Grande do Norte Research Foundation (FAPERN) and Pro-Rectory of Research (PROPESQ) from Federal University of Rio Grande do Norte (UFRN).

Funding

Funding was provided by CNPq (Brazil) (Grant No. 446044/2014-8).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10973_2019_8737_MOESM1_ESM.jpeg (442 kb)
Supplementary material 1 (JPEG 441 kb)
10973_2019_8737_MOESM2_ESM.pdf (174 kb)
Supplementary material 2 (PDF 174 kb)

References

  1. 1.
    Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018.  https://doi.org/10.1016/j.bmc.2017.06.052.CrossRefPubMedGoogle Scholar
  2. 2.
    Naglah AM, Zewail MA, Rahman SABDEL, Bhat MA. Comparable study between the application of microwave irradiation technique and conventional method in the synthesis of nonapeptide (B22–B30) of insulin B-chain. Dig J Nanomater Biostruct. 2014.  https://doi.org/10.4103/1687-4315.124014.CrossRefGoogle Scholar
  3. 3.
    Hondt MD, Gevaert B, Stalmans S, Van Dorpe S, Wynendaele E, Peremans K, et al. Reversed-phase fused-core HPLC modeling of peptides. J Pharm Anal. 2013.  https://doi.org/10.1016/j.jpha.2012.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, et al. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics. 2014.  https://doi.org/10.1016/j.euprot.2014.05.003.CrossRefGoogle Scholar
  5. 5.
    Fosgerau K, Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov Today. 2015.  https://doi.org/10.1016/j.drudis.2014.10.003.CrossRefPubMedGoogle Scholar
  6. 6.
    Harvey AL. Toxins and drug discovery. Toxicon. 2014.  https://doi.org/10.1016/j.toxicon.2014.10.020.CrossRefPubMedGoogle Scholar
  7. 7.
    Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018.  https://doi.org/10.1016/j.bmc.2017.09.029.CrossRefPubMedGoogle Scholar
  8. 8.
    Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014.  https://doi.org/10.1016/j.toxicon.2014.06.006.CrossRefPubMedGoogle Scholar
  9. 9.
    Hadley EB, Hancock REW. Strategies for the discovery and advancement of novel cationic antimicrobial peptides. Curr Top Med Chem. 2010.  https://doi.org/10.2174/1568026107931766-48.CrossRefPubMedGoogle Scholar
  10. 10.
    Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol. 2006;1:5.  https://doi.org/10.1128/CMR.00056-05.CrossRefGoogle Scholar
  11. 11.
    Almeida DD, Scortecci KC, Kobashi LS, Agnez-lima LF, Medeiros SRB, Silva-júnior AA, et al. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. Biomedcentral Genom. 2012.  https://doi.org/10.1186/1471-2164-13-362.CrossRefGoogle Scholar
  12. 12.
    Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, et al. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie. 2013.  https://doi.org/10.1016/j.biochi.2013.06.003.CrossRefPubMedGoogle Scholar
  13. 13.
    de Melo ET, Estrela BA, Santos ECG, Machado PRL, Farias KJS, Torres TM, et al. Peptides structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: stigmurin. Peptides. 2015.  https://doi.org/10.1016/j.peptides.2015.03.003.CrossRefPubMedGoogle Scholar
  14. 14.
    Daniele-Silva A, Machado RJA, Monteiro NKV, Estrela AB, Santos ECG, Carvalho E, et al. Stigmurin and TsAP-2 from Tityus stigmurus scorpion venom: assessment of structure and therapeutic potential in experimental sepsis. Toxicon. 2016.  https://doi.org/10.1016/j.toxicon.2016.08.016.CrossRefPubMedGoogle Scholar
  15. 15.
    Parente AMS, Daniele-silva A, Furtado AA, Melo MA, Lacerda AF, Queiroz M, et al. Analogs of the scorpion venom peptide stigmurin: structural assessment, toxicity, and increased antimicrobial activity. Toxins (Basel). 2018.  https://doi.org/10.3390/toxins10040161.CrossRefGoogle Scholar
  16. 16.
    Amorim-carmo B, Daniele-silva A, Parente AMS, Furtado AA, Carvalho E, Oliveira JWF, et al. Potent and broad-spectrum antimicrobial activity of analogs from the scorpion peptide stigmurin. Int J Mol Sci. 2019.  https://doi.org/10.3390/ijms20030623.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010.  https://doi.org/10.1007/s11095-009-0045-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang W. Lyophilisation and development of solid pharmaceuticals. Int J Pharm. 2000.  https://doi.org/10.1016/S0378-5173(00)00423-3.CrossRefPubMedGoogle Scholar
  19. 19.
    Katayama DS, Carpenter JF, Manning MC, Randolph TW, Setlow P, Menard KP. Characterization of amorphous solids with weak glass transitions using high ramp rate differential scanning calorimetry. J Pharm Sci. 2008.  https://doi.org/10.1002/jps20991.CrossRefPubMedGoogle Scholar
  20. 20.
    Chandrasekhar S, Topp EM. Thiol-disulfide exchange in peptides derived from human growth hormone during lyophilization and storage in the solid state. J Pharm Sci. 2015.  https://doi.org/10.1002/jps.24370.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chang LL, Pikal MJ. Mechanisms of protein stabilization in the solid state. J Pharm Sci. 2009.  https://doi.org/10.1002/jps21825.CrossRefPubMedGoogle Scholar
  22. 22.
    D’Hondt M, Demaré W, Van Dorpe S, Wynendaele E, Burvenich C, Peremans K, et al. Dry heat stress stability evaluation of casein peptide mixture. Food Chem. 2011.  https://doi.org/10.1016/j.foodchem.2011.03.004.CrossRefPubMedGoogle Scholar
  23. 23.
    Bell LN. Peptide stability in solids and solutions. Biotechnol Prog. 1997.  https://doi.org/10.1021/bp970057y.CrossRefGoogle Scholar
  24. 24.
    Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008.  https://doi.org/10.1002/jps21176.CrossRefPubMedGoogle Scholar
  25. 25.
    Lai MC, Topp EM. Solid-state chemical stability of proteins and peptides. J Pharm Sci. 1999.  https://doi.org/10.1021/js980374e.CrossRefPubMedGoogle Scholar
  26. 26.
    Capelle MAH, Gurny R, Arvinte T. High throughput screening of protein formulation stability: practical considerations. Eur J Pharm Biopharm. 2007.  https://doi.org/10.1016/j.ejpb.2006.09.009.CrossRefPubMedGoogle Scholar
  27. 27.
    Le J, Reubsaet E, Beijnen JH, Bult A, Van Maanen RJ, Danie JA, et al. Analytical techniques used to study the degradation of proteins and peptides: chemical instability. J Pharm Biomed Anal. 1998.  https://doi.org/10.1016/S0731-7085(98)00064-8.CrossRefGoogle Scholar
  28. 28.
    Indurthi VSK, Leclerc E, Vetter SW. Calorimetric investigation of diclofenac drug binding to a panel of moderately glycated serum albumins. Eur J Pharm Sci. 2014.  https://doi.org/10.1016/j.ejps.2014.04.002.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu J, Wang XJ, Liu YX, Ching CB. Thermal and FTIR investigation of freeze-dried protein-excipient mixtures. J Therm Anal Calorim. 2007.  https://doi.org/10.1007/s10973-006-7598-y.CrossRefGoogle Scholar
  30. 30.
    Cucos A, Budrugeac P. Simultaneous TG/DTG–DSC–FTIR characterization of collagen in inert and oxidative atmospheres. J Therm Anal Calorim. 2014.  https://doi.org/10.1007/s10973-013-3116-1.CrossRefGoogle Scholar
  31. 31.
    Andrushchenko VV, Vogel HJ, Prenner EJ. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry. Biochim Byophys Acta. 2007.  https://doi.org/10.1016/j.bbamem.2007.05.015.CrossRefGoogle Scholar
  32. 32.
    Vyazovkin S, Vincent L, Sbirrazzuoli N. Thermal denaturation of collagen analyzed by isoconversional method. Macromol Biosci. 2007.  https://doi.org/10.1002/mabi.200700162.CrossRefPubMedGoogle Scholar
  33. 33.
    Dandurand J, Samouillan V, Lacoste-ferre MH, Lacabanne C. Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: signature of the amyloid fibers. Pathol Biol. 2014.  https://doi.org/10.1016/j.patbio.2014.02.001.CrossRefPubMedGoogle Scholar
  34. 34.
    Samouillan V, Delaunay F, Dandurand J, Merbahi N, Gardou J-P, Yousfi M, et al. The use of thermal techniques for the characterization and selection of natural biomaterials. J Funct Biomater. 2011.  https://doi.org/10.3390/jfb2030230.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Armstrong G, Kailas L. Hyphenated analytical techniques for materials characterisation. Eur J Phys. 2017.  https://doi.org/10.1088/1361-6404/aa7e93.CrossRefGoogle Scholar
  36. 36.
    Gallo RC, Ferreira APG, Castro REA, Cavalheiro ETG. Studying the thermal decomposition of carvedilol by coupled TG–FTIR. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-015-4931-3.CrossRefGoogle Scholar
  37. 37.
    Bartyzel A, Sztanke M, Sztanke K. Thermal behaviour of antiproliferative active 3-(2-furanyl)-8-aryl-7,8-dihydroimidazo[2,1-c][1,2,4]triazin-4(6H)-ones. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6198-3.CrossRefGoogle Scholar
  38. 38.
    Jingyan S, Yuwen L, Zhiyong W, Cunxin W. Investigation of thermal decomposition of ascorbic acid by TG–FTIR and thermal kinetics analysis. J Pharm Biomed Anal. 2013.  https://doi.org/10.1016/j.jpba.2013.01.018.CrossRefPubMedGoogle Scholar
  39. 39.
    Ambrozini B, Cervini P, Cavalheiro ÉTG. Thermal behavior of the β-blocker propranolol. J Therm Anal Calorim. 2016.  https://doi.org/10.1007/s10973-015-5118-7.CrossRefGoogle Scholar
  40. 40.
    Risoluti R, Fabiano MA, Gullifa G, Vecchio S, Materazzi S. FTIR-evolved gas analysis in recent thermoanalytical investigations. Appl Spectrosc Rev. 2017.  https://doi.org/10.1080/05704928.2016.1207658.CrossRefGoogle Scholar
  41. 41.
    Manral L, Gupta PK, Suryanarayana MVS, Ganesan K, Malhotra RC. Thermal behaviour of fentanyl and its analogues during flash pyrolysis. J Therm Anal Calorim. 2009.  https://doi.org/10.1007/s10973-008-9211-z.CrossRefGoogle Scholar
  42. 42.
    De Souza VG, Correia LP, Mace RO. Application of thermal analysis and pyrolysis coupled to GC/MS in the qualification of simvastatin pharmaceutical raw material. J Therm Anal Calorim. 2011.  https://doi.org/10.1007/s10973-010-1274-y.CrossRefGoogle Scholar
  43. 43.
    Haidar FN, Patterson MJ, Moors M Jr, Smith TW. Effects of structure on pyrolysis gases from amino acids. J Agric Food Chem. 1981.  https://doi.org/10.1021/jf00103a040.CrossRefGoogle Scholar
  44. 44.
    Wang X, Sheng L, Yang X. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. Bioresour Technol. 2017.  https://doi.org/10.1016/j.biortech.CrossRefPubMedGoogle Scholar
  45. 45.
    Carpino LA, Han GY. The 9-fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J Am Chem Soc. 1970.  https://doi.org/10.1021/ja00722a043.CrossRefGoogle Scholar
  46. 46.
    Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 1963.  https://doi.org/10.1021/ja00897a025.CrossRefGoogle Scholar
  47. 47.
    Machado A, Liria CW, Proti PB, Remuzgo C, Miranda MTM. Sínteses química e enzimática de peptídeos: princípios básicos e aplicações. Quim Nov. 2004.  https://doi.org/10.1590/S0100-40422004000500018.CrossRefGoogle Scholar
  48. 48.
    Mant CT, Byars A, Ankarlo S, Jiang Z, Hodges RS. Separation of highly charged (+ 5 to + 10) amphipathic α-helical peptide standards by cation-exchange and reversed-phase high-performance liquid chromatography. J Chromatogr A. 2018.  https://doi.org/10.1016/j.chroma.2018.09.003.CrossRefPubMedGoogle Scholar
  49. 49.
    Xu J, Zheng L, Lin L, Sun B, Su G, Zhao M. Stop-flow reversed phase liquid chromatography × size-exclusion chromatography for separation of peptides. Anal Chim Acta. 2018.  https://doi.org/10.1016/j.aca.2018.02.025.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Field JK, Euerby MR, Lau J, Thøgersen H, Petersson P. Investigation into reversed phase chromatography peptide separation systems part I: development of a protocol for column characterisation. J Chromatogr A. 2019.  https://doi.org/10.1016/j.chroma.2019.05.038.CrossRefPubMedGoogle Scholar
  51. 51.
    Rasmussen JH. Synthetic peptide API manufacturing: a mini review of current perspectives for peptide manufacturing. Bioorg Med Chem. 2018.  https://doi.org/10.1016/j.bmc.2018.01.018.CrossRefPubMedGoogle Scholar
  52. 52.
    Samouillan V, Dandurand J, Lacabanne C, Hornebeck W. Molecular mobility of elastin: effect of molecular architecture. Biomacromolecules. 2002;1:45.  https://doi.org/10.1021/bm015655m.CrossRefGoogle Scholar
  53. 53.
    Veiga A, Oliveira PR, Bernardi LS, Mendes C, Silva MAS, Sangoi MS, et al. Solid-state compatibility studies of a drug without melting point: the case of omeprazole sodium. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-017-6756-.CrossRefGoogle Scholar
  54. 54.
    Smith AJ, Ali FI, Soldatov DV. Glycine homopeptides: the effect of the chain length on the crystal structure and solid state reactivity. Cryst Eng Commun. 2014.  https://doi.org/10.1039/C4CE00630E.CrossRefGoogle Scholar
  55. 55.
    Rodante F, Marrosu G. Thermal analysis of some α-amino acids using simultaneous TG–DSC apparatus. The use of dynamic thermogravimetry to study the chemical kinetics of solid state decomposition. Thermichim Acta. 1990.  https://doi.org/10.1016/0040-6031(90)87002-T.CrossRefGoogle Scholar
  56. 56.
    Rodante F, Marrosu G, Catalani G. Thermal analysis of some α-amino acids with similar structures. Thermochim Acta. 1992.  https://doi.org/10.1016/0040-6031(92)80018-R.CrossRefGoogle Scholar
  57. 57.
    Rodante F. Thermodynamics and kinetics of decomposition processes for standard α-amino acids and some of their dipeptides in the solid state. Thermochim Acta. 1992.  https://doi.org/10.1016/0040-6031(92)85105-5.CrossRefGoogle Scholar
  58. 58.
    Li J, Wang Z, Yang X, Hu L, Liu Y, Wang C. Decomposing or subliming? An investigation of thermal behavior of l-leucine. Thermochim Acta. 2006.  https://doi.org/10.1016/j.tca.2006.05.004.CrossRefGoogle Scholar
  59. 59.
    Li J, Wang Z, Yang X, Hu L, Liu Y, Wang C. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. J Anal Appl Pyrolysis. 2007.  https://doi.org/10.1016/j.jaap.2007.03.001.CrossRefGoogle Scholar
  60. 60.
    Jie L, Yuwen L, Jingyan S. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG–FTIR. Thermochim Acta. 2008.  https://doi.org/10.1016/j.tca.2007.10.014.CrossRefGoogle Scholar
  61. 61.
    Orsini S, Duce C, Bonaduce I. Analytical pyrolysis of ovalbumin. J Anal Appl Pyrolysis. 2018.  https://doi.org/10.1016/j.jaap.2018.01.026.CrossRefGoogle Scholar
  62. 62.
    Tudorachi N, Chiriac AP. TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate). Polym Test. 2011.  https://doi.org/10.1016/j.polymertesting.2011.02.007.CrossRefGoogle Scholar
  63. 63.
    Weiss IM, Muth C, Drumm R, Kirchner HOK. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018;1:15.  https://doi.org/10.1186/s13628-018-0042-4.CrossRefGoogle Scholar
  64. 64.
    Sharma RK, Chan WG, Wang J, Waymack BE, Wooten JB, Seeman JI, et al. On the role of peptides in the pyrolysis of amino acids. J Anal Appl Pyrolysis. 2004;1:15.  https://doi.org/10.1016/j.jaap.2004.03.009.CrossRefGoogle Scholar
  65. 65.
    Pinto BV, Ferreira APG, Cavalheiro ETG. A mechanism proposal for fluoxetine thermal decomposition. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6305-5.CrossRefGoogle Scholar
  66. 66.
    Wei X, Ma X, Peng X, Yao Z, Yang F, Dai M. Comparative investigation between co-pyrolysis characteristics of protein and carbohydrate by TG–FTIR and Py-GC/MS. J Anal Appl Pyrolysis. 2018.  https://doi.org/10.1016/j.jaap.2018.08.031.CrossRefGoogle Scholar
  67. 67.
    Chiavari G, Galletti GC. Pyrolysis-gas chromatography/mass spectrometry of amino acids. J Anal Appl Pyrolysis. 1992.  https://doi.org/10.1016/0165-2370(92)85024-F.CrossRefGoogle Scholar
  68. 68.
    Weber LW, Spleiß M. Formation of volatile organic compounds from peptides during CO2-IR-laser irradiation of different mammalian tissues. J Anal Appl Pyrolysis. 1997.  https://doi.org/10.1016/S0165-2370(96)00958-8.CrossRefGoogle Scholar
  69. 69.
    Kato S, Kurata T, Ishitsuka R, Fujimaki M. Pyrolysis of β-hydroxy amino acids, especially L-serine. Agric Biol Chem. 1970.  https://doi.org/10.1271/bbb1961.34.1826.CrossRefGoogle Scholar
  70. 70.
    Basiuk VA, Navarro-Gonzalez R, Basiuk EV. Pyrolysis of alanine and alpha-aminoisobutyric acid: identification of less-volatile products using gas chromatography Fourier transform infrared spectroscopy mass spectrometry. J Anal Appl Pyrolysis. 1998.  https://doi.org/10.1016/S0165-2370(98)00057-6.CrossRefGoogle Scholar
  71. 71.
    Sharma RK, Chan WG, Seeman JI, Hajaligol MR. Formation of low molecular weight heterocycles and polycyclic aromatic compounds (PACs) in the pyrolysis of α-amino acids. J Anal Appl Pyrolysis. 2003.  https://doi.org/10.1016/S0165-2370(02)00108-0.CrossRefGoogle Scholar
  72. 72.
    Liu G, Wright MM, Zhao Q, Brown RC, Wang K, Xue Y. Catalytic pyrolysis of amino acids: comparison of aliphatic amino acid and cyclic amino acid. Energy Convers Manag. 2016.  https://doi.org/10.1016/j.enconman.2016.01.024.CrossRefGoogle Scholar
  73. 73.
    Basiuk VA. Pyrolysis of valine and leucine at 500 °C: identification of less-volatile products using gas chromatography–Fourier transform infrared spectroscopy-mass spectrometry. J Anal Appl Pyrolysis. 1998.  https://doi.org/10.1016/S0165-2370(98)00086-2.CrossRefGoogle Scholar
  74. 74.
    Basiuk VA, Douda J. Analysis of less-volatile products of poly-l-valine pyrolysis by gas chromatography/Fourier transform infrared spectroscopy/mass spectrometry. J Anal Appl Pyrolysis. 2001.  https://doi.org/10.1016/S0165-2370(00)00072-3.CrossRefGoogle Scholar
  75. 75.
    Gallois N, Templier J, Derenne S. Pyrolysis-gas chromatography–mass spectrometry of the 20 protein amino acids in the presence of TMAH. J Anal Appl Pyrolysis. 2007.  https://doi.org/10.1016/j.jaap.2007.02.010.CrossRefGoogle Scholar
  76. 76.
    Hansson KM, Åmand LE, Habermann A, Winter F. Pyrolysis of poly-l-leucine under combustion-like conditions. Fuel. 2003.  https://doi.org/10.1016/S0016-2361(02)00357-5.CrossRefGoogle Scholar
  77. 77.
    Fabbri D, Adamiano A, Falini G, De Marco R, Mancini I. Analytical pyrolysis of dipeptides containing proline and amino acids with polar side chains. Novel 2,5-diketopiperazine markers in the pyrolysates of proteins. J Anal Appl Pyrolysis. 2012.  https://doi.org/10.1016/j.jaap.2012.02.001.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Dayanne Lopes Porto
    • 1
  • Geovana Quixabeira Leite
    • 1
  • Antonio Rodrigo Rodriges Da Silva
    • 1
  • Augusto Lopes Souto
    • 1
  • Ana Paula Barreto Gomes
    • 1
  • Fábio Santos de Souza
    • 2
  • Rui Oliveira Macêdo
    • 2
  • Renata Mendonça Araújo
    • 3
  • Éder Tadeu Gomes Cavalheiro
    • 4
  • Matheus de Freitas Fernandes Pedrosa
    • 1
  • Cícero Flávio Soares Aragão
    • 1
    Email author
  1. 1.Departamento de FarmáciaUniversidade Federal do Rio Grande do NorteNatalBrazil
  2. 2.Deparatmento de Ciências FarmacêuticasUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Departamento de Química, Instituto de QuímicaUniversidade Federal do Rio Grande do NorteNatalBrazil
  4. 4.Departamento de Química e Física Molecular, Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations