Advertisement

Thermophysical properties of choline chloride/urea deep eutectic solvent in aqueous solution at infinite dilution at T = 293.15–323.15 K

  • Hemayat ShekaariEmail author
  • Mohammed Taghi Zafarani-Moattar
  • Behrouz Mohammadi
Article
  • 9 Downloads

Abstract

The green solvents called deep eutectic solvents (DESs) have been investigated in numerous technologies in the recent years. In this study, for the first time it was attempted to measure thermophysical properties of commonly used DES (choline chloride/urea) in aqueous solutions at dilution concentration ranges of DES (x1 = 0.0000–0.0182) mole fraction and at T = 293.15–323.15 K. Some of the properties including density, speed of sound, refractive index and viscosity were measured for calculation of some thermophysical properties including standard partial molar volume (\(V_{{\upvarphi }}^{0}\)), partial molar isentropic compressibility (\(\kappa_{{\upvarphi }}^{0}\)), excess molar volume (VE), viscosity B-coefficient and molar refraction (RD) in dilute region of concentration. The obtained values of above-mentioned properties were used for evaluation of the solute–solvent interaction of the studied binary mixtures (DES + water).

Keywords

Choline chloride Urea Thermophysical properties Deep eutectic solvent Infinite dilution 

Notes

Acknowledgements

The authors would like to express their gratitude to University of Tabriz Research Council for the financial support of this research.

References

  1. 1.
    Ma Ch, Guo Y, Li D, Zong J, Ji X, Liu Ch. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water. J Chem Thermodyn. 2017;105:30–6.CrossRefGoogle Scholar
  2. 2.
    Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114:11060–82.CrossRefGoogle Scholar
  3. 3.
    Ashworth CR, Matthews RP, Welton T, Hunt PA. Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent. Phys Chem Chem Phys. 2016;18:18145–60.CrossRefGoogle Scholar
  4. 4.
    Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 2004;126:9142–7.CrossRefGoogle Scholar
  5. 5.
    Shahbaz K, AlNashef IM, Lin RJT, Hashim MA, Mjalli FS, Farid MM. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials. Sol Energy Mater Sol Cells. 2016;55:147–54.CrossRefGoogle Scholar
  6. 6.
    Yadav A, Pandey S. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and Its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J Chem Eng Data. 2014;59:2221–9.CrossRefGoogle Scholar
  7. 7.
    Matsunaga H, Katoh K, Habu H, Miyake A. Thermal behavior of ammonium dinitramide and amine nitrate mixtures. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7875-6.(0123456789(),-volV)(0123456789().,-volV).Google Scholar
  8. 8.
    Wang H, Jia Y, Wang X, Yao Y, Jing Y. Physical–chemical properties of nickel analogs ionic liquid based on choline chloride. J Therm Anal Calorim. 2014;115:1779–85.CrossRefGoogle Scholar
  9. 9.
    Yue D, Jing Y, Ma J, Yao Y, Jing Y. Physicochemical properties of ionic liquid analogue containing magnesium chloride as temperature and composition dependence. J Therm Anal Calorim. 2012;110:773–80.CrossRefGoogle Scholar
  10. 10.
    Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003;1:70–1.CrossRefGoogle Scholar
  11. 11.
    Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani ME. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere. 2013;93:455–9.CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Wang Q, Zhang S, Lu X, Zhang X. Electrodeposition in ionic liquids. Chem Phys Chem. 2016;17:335–51.CrossRefGoogle Scholar
  13. 13.
    Leron RB, Li MH. High-pressure density measurements for choline chloride: Urea deep eutectic solvent and its aqueous mixtures at T = (298.15–323.15) K and up to 50 MPa. J Chem Thermodyn. 2012;54:293–301.CrossRefGoogle Scholar
  14. 14.
    Guo W, Hou Y, Ren S, Tian S, Wu W. Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J Chem Eng Data. 2013;58:866–72.CrossRefGoogle Scholar
  15. 15.
    Shekaari H, Zafarani-Moattar MT, Mohammadi B. Thermophysical characterization of aqueous deep eutectic solvent (choline chloride/urea) mixtures in full ranges of concentration at T = (293.15–323.15) K. J Mol Liq. 2017;243:451–61.CrossRefGoogle Scholar
  16. 16.
    Sanchez PB, Garcia J, Salgado J, Gonzalez-Romero E. Studies of volumetric and transport properties of ionic liquid–water mixtures and its viability to be used in absorption systems. ACS Sustain Chem Eng. 2016;58:866–72.Google Scholar
  17. 17.
    Sadeghi R, Ziamajidi F. Apparent molar volume and isentropic compressibility of trisodium citrate in water and in aqueous solutions of polyvinylpyrrolidone at T = (283.15 to 308.15) K. J Chem Eng Data. 2007;52:1037–44.CrossRefGoogle Scholar
  18. 18.
    Ananthaswamy J, Atkinson G. Thermodynamics of concentrated electrolyte mixtures. Activity coefficients in aqueous NaCI–CaCI2 at 25. J Solut Chem. 1982;11:509.CrossRefGoogle Scholar
  19. 19.
    Ananthaswamy J, Atkinson G. Thermodynamics of concentrated electrolyte mixtures. 4. Pitzer–Debye–Hueckel limiting slopes for water from 0 to 100 degree C and from 1 atm to 1 kbar. J Chem Eng Data. 1984;29:81–7.CrossRefGoogle Scholar
  20. 20.
    Zhao H. Viscosity B-coefficients and standard partial molar volumes of amino acids, and their roles in interpreting the protein (enzyme) stabilization. Biophys Chem. 2006;122:157–83.CrossRefGoogle Scholar
  21. 21.
    Vranes M, Dozic S, Djeric V, Gadzuric S. Volumetric properties of ammonium nitrate in N,N-dimethylformamide. J Chem Thermodyn. 2012;54:245–9.CrossRefGoogle Scholar
  22. 22.
    Lu XM, Xu WG, Gui JS, Li HW, Yang JZ. Volumetric properties of room temperature ionic liquid 1. The system of 1-methyl-3-ethylimidazolium ethyl sulfate + water at temperature in the range (278.15 to 333.15) K. J Chem Thermodyn. 2005;37:13–9.CrossRefGoogle Scholar
  23. 23.
    Shekaari H, Mousavi SS. Volumetric properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate + molecular solvents at T = (298.15–328.15) K. Fluid Phase Equilib. 2010;291:201–7.CrossRefGoogle Scholar
  24. 24.
    Shekaari H, Bezaatpour A, Elhami-Kalvanagh R. Effect of an ionic liquid on the volumetric behavior of tetradentate N2O2 type Schiff bases in DMF at T = (308.15 to 328.15) K. J Chem Thermodyn. 2012;51:114–9.CrossRefGoogle Scholar
  25. 25.
    Anouti M, Caillon-Caravanier M, Dridi Y, Jacquemin J, Hardacre C, Lemordant D. Liquid densities, heat capacities, refractive index and excess quantities for protic ionic liquids + water binary system. J Chem Thermodyn. 2009;41:799–808.CrossRefGoogle Scholar
  26. 26.
    Shekaari H, Zafarani-Moattar MT, Mirheydari SN. Volumetric, ultrasonic and viscometric studies of aspirin in the presence of 1-octyl-3-methylimidazolium bromide ionic liquid in acetonitrile solutions at T = (288.15–318.15) K. Z Phys Chem. 2016;230(12):1773–99.CrossRefGoogle Scholar
  27. 27.
    Sadeghi R, Shekaari H, Hosseini R. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous mixtures at different temperatures. J Chem Thermodyn. 2009;41:273–89.CrossRefGoogle Scholar
  28. 28.
    Bahadur I, Deenadayalu N. Apparent molar volume and isentropic compressibility for the binary systems methyltrioctylammonium bis(trifluoromethylsulfonyl)imide + methyl acetate or methanol and (methanol + methyl acetate) at T = 298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure. J Solut Chem. 2011;40:1528–43.CrossRefGoogle Scholar
  29. 29.
    Burakowski A, Glinski J. Solvation numbers of alcohols in n-heptane and alcohols in n-propanol diluted liquid mixtures from the acoustic Pasynski method. Chem Phys Lett. 2008;453:178–82.CrossRefGoogle Scholar
  30. 30.
    Zhao Q, Sun ZJ, Zhang Q, Xing SK, Liu M, Sun DZ, Li WL. Densities and apparent molar volumes of myo-inositol in aqueous mixtures of alkaline earth metal salts at different temperatures. Therm Chim Acta. 2009;487:1–7.CrossRefGoogle Scholar
  31. 31.
    Iqbal MJ, Chaudhry MA. Volumetric and viscometric studies of antidepressant drugs in aqueous medium at different temperatures. J Chem Eng Data. 2009;54:2772–6.CrossRefGoogle Scholar
  32. 32.
    Herail M, Le Guennec M, Le Goff D, Proutiere A. Molecular weight determination from light scattering and refraction in mixtures. A new and coherent theoretical equation. J Mol Struct. 1996;380:171–93.Google Scholar
  33. 33.
    Tariq M, Forte PAS, Gomes MFC, Lopes JNC, Rebelo LPN. Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn. 2009;41:790–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Hemayat Shekaari
    • 1
    Email author
  • Mohammed Taghi Zafarani-Moattar
    • 1
  • Behrouz Mohammadi
    • 1
  1. 1.Department of Physical ChemistryUniversity of TabrizTabrizIran

Personalised recommendations