Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3257–3265 | Cite as

Silver(I) complexes with long-chain diamines in non-aqueous solvents

Thermodynamic and modeling studies
  • P. L. Zanonato
  • A. Melchior
  • M. Busato
  • P. Di Bernardo
  • M. TolazziEmail author
Article
  • 30 Downloads

Abstract

The results of a potentiometric and calorimetric study on the complexation reactions of neutral N-donor ligands 1,4-diaminobutane (dab) and 1,5-diaminopentane (dap) with silver(I) in dimethylsulfoxide (DMSO) are reported. The investigation is extended for dab ligand to the aprotic solvent acetonitrile (AN), which presents quite different dielectric constant and donor number with respect to DMSO. In both solvents, polynuclear Ag2L22+ and Ag2L32+ species of high stability are formed, which inhibit the formation of mononuclear ones. The Ag2L22+ species are stabilized by the formation of large, stable non-chelate cyclic rings whose structures are described by DFT calculations. The overall enthalpy terms associated with the complex formation are strongly exothermic, whereas entropy values oppose the complex formation. An interesting feature is the little enthalpy and no significant or positive entropy variation associated with the successive formation of Ag2L32+. Also in this case, molecular modeling studies shed some light on their structure in solution, indicating that probably no changes of configuration around the metal ion occur. The stability constants and enthalpy values obtained for common Ag2L22+ species are slightly influenced by the chain length of the diamines, as confirmed also by a comparison with available data for the same species formed by the shorter 1,3-diamino propane (dapr) in DMSO.

Keywords

Silver(I) Long-chain diamines Complexation Non-aqueous solvents Thermodynamics Calorimetry DFT 

Notes

Supplementary material

10973_2019_8725_MOESM1_ESM.pdf (236 kb)
Supplementary material 1 (PDF 235 kb)

References

  1. 1.
    Martell AE, Motekaitis RJ, Chen D, Murase I. Thermodynamics of coordination of metal ions with binucleating macrocylic and macrobicyclic ligands. Pure Appl Chem. 1993;65:959–64.Google Scholar
  2. 2.
    Smith RM, Martell AE. Critical stability constants. New York: Plenum Press; 2004.Google Scholar
  3. 3.
    Tiné MR. Cobalt complexes in aqueous solutions as dioxygen carriers. Coord Chem Rev. 2012;256:316–27.Google Scholar
  4. 4.
    Piccinelli F, Leonzio M, Bettinelli M, Monari M, Grazioli C, Melchior A, et al. Tuning of the sensing properties of luminescent Eu3+ complexes towards the nitrate anion. Dalton Trans. 2016;45:3310–8.PubMedGoogle Scholar
  5. 5.
    Piccinelli F, Bettinelli M, Melchior A, Grazioli C, Tolazzi M. Structural, optical and sensing properties of novel Eu(III) complexes with furan- and pyridine-based ligands. Dalton Trans. 2015;44:182–92.PubMedGoogle Scholar
  6. 6.
    Leonzio M, Melchior A, Faura G, Tolazzi M, Bettinelli M, Zinna F, et al. A chiral lactate reporter based on total and circularly polarized Tb(iii) luminescence. New J Chem. 2018;42:7931–9.Google Scholar
  7. 7.
    Piccinelli F, De Rosa C, Melchior A, Faura G, Tolazzi M, Bettinelli M. Eu(III) and Tb(III) complexes of 6-fold coordinating ligands showing high affinity for the hydrogen carbonate ion: a spectroscopic and thermodynamic study. Dalton Trans. 2019;48:1202–16.PubMedGoogle Scholar
  8. 8.
    Di Bernardo P, Melchior A, Tolazzi M, Zanonato PL. Thermodynamics of lanthanide(III) complexation in non-aqueous solvents. Coord Chem Rev. 2012;256:328–51.Google Scholar
  9. 9.
    Di Bernardo P, Melchior A, Portanova R, Tolazzi M, Zanonato PL. Complex formation of N-donor ligands with group 11 monovalent ions. Coord Chem Rev. 2008;252:1270–85.Google Scholar
  10. 10.
    Del Piero S, Di Bernardo P, Fedele R, Melchior A, Polese P, Tolazzi M. Affinity of polypyridines towards Cd(II) and Co(II) ions: a thermodynamic and DFT study. Eur J Inorg Chem. 2006;2006:3738–45.Google Scholar
  11. 11.
    Del Piero S, Melchior A, Polese P, Portanova R, Tolazzi M. N-methylation effects on the coordination chemistry of cyclic triamines with divalent transition metals and their CoII dioxygen carriers. Eur J Inorg Chem. 2006;18:304–14.Google Scholar
  12. 12.
    Melchior A, Tolazzi M. Co(II) complexes with tripodal N-donor ligands: thermodynamics of formation in anaerobic conditions and oxygen binding. Inorg Chim Acta. 2011;367:120–6.Google Scholar
  13. 13.
    Del Piero S, Ghezzi L, Melchior A, Tiné MR, Tolazzi M. Solvent role on cobalt(II) dioxygen carriers based on simple polyamine ligands. Helv Chim Acta. 2005;88:839–53.Google Scholar
  14. 14.
    Thaler A, Heidari N, Cox BG, Schneider H. Stability constants of copper(I) and silver(I) complexes with open-chain, macrocyclic and -bicyclic aza-ligands in acetonitrile and comparison with results in dimethylsulfoxide. Inorg Chim Acta. 1999;286:160–8.Google Scholar
  15. 15.
    Lippard SJ, Berg JM. Principles of bioinorganic chemistry. Mill Valley, CA: University Science Books; 1994.Google Scholar
  16. 16.
    Nurchi VM, Crisponi G, Lachowicz JI, Zoroddu MA, Peana M, Medici S, et al. Fluoroquinolones: a micro-species equilibrium in the protonation of amphoteric compounds. Eur J Pharm Sci. 2016;93:380–91.PubMedGoogle Scholar
  17. 17.
    Lachowicz JI, Nurchi VM, Crisponi G, Cappai I, Cappai R, Busato M, et al. Para-aminosalicylic acid in the treatment of manganese toxicity. Complexation of Mn2+ with 4-amino-2-hydroxybenzoic acid and its N-acetylated metabolite. New J Chem. 2018;42:8035–49.Google Scholar
  18. 18.
    Nurchi VM, de Guadalupe Jaraquemada-Pelaez M, Crisponi G, Lachowicz JI, Cappai R, Gano L, et al. A new tripodal kojic acid derivative for iron sequestration: synthesis, protonation, complex formation studies with Fe3+, Al3+, Cu2+ and Zn2+, and in vivo bioassays. J Inorg Biochem. 2019;193:152–65.PubMedGoogle Scholar
  19. 19.
    Mendonça AC, Martins AF, Melchior A, Marques SM, Chaves S, Villette S, et al. New tris-3,4-HOPO lanthanide complexes as potential imaging probes: complex stability and magnetic properties. Dalton Trans. 2013;42:6046–57.PubMedGoogle Scholar
  20. 20.
    Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.PubMedGoogle Scholar
  21. 21.
    Boros E, Holland JP, Kenton N, Rotile N, Caravan P. Macrocycle-based hydroxamate ligands for complexation and immunoconjugation of (89)zirconium for positron emission tomography (PET) imaging. ChemPlusChem. 2016;81:274–81.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Salbu B, Steinnes E. Trace elements in natural waters. Boca Raton: CRC Press; 1994.Google Scholar
  23. 23.
    Bazzicalupi C, Bencini A, Bianchi A, Del Piero S, Fornasari P, Giorgi C, et al. Co(II) and Cd(II) complexation with two dipyridine-containing macrocyclic polyamines in water and dimethyl sulfoxide. New J Chem. 2005;29:805–11.Google Scholar
  24. 24.
    Di Bernardo P, Zanonato PL, Melchior A, Portanova R, Tolazzi M, Choppin GR, et al. Thermodynamic and spectroscopic studies of lanthanides(III) complexation with polyamines in dimethyl sulfoxide. Inorg Chem. 2008;47:1155–64.PubMedGoogle Scholar
  25. 25.
    Di Bernardo P, Zanonato PL, Benetollo F, Melchior A, Tolazzi M, Rao L. Energetics and structure of uranium(VI)-acetate complexes in dimethyl sulfoxide. Inorg Chem. 2012;51:9045–55.PubMedGoogle Scholar
  26. 26.
    Melchior A, Tolazzi M, Polese P, Zanonato PL. Thermodynamics of complex formation of silver(I) with N-donor ligands in non-aqueous solvents. J Therm Anal Calorim. 2017;130:461–9.Google Scholar
  27. 27.
    Piccinelli F, Melchior A, Speghini A, Monari M, Tolazzi M, Bettinelli M. Europium (III) complexes with new N-donor ligand: a comparative study in solid state and solution. Polyhedron. 2013;57:30–8.Google Scholar
  28. 28.
    Piccinelli F, Leonzio M, Bettinelli M, Melchior A, Faura G, Tolazzi M. Luminescent Eu3+ complexes in acetonitrile solution: anion sensing and effect of water on the speciation. Inorg Chim Acta. 2016;453:751–6.Google Scholar
  29. 29.
    Døssing A, Kadziola A, Gawryszewska P, Watras A, Melchior A. Structure, stability and spectroscopic features of the neodymium(III) complex of the octadentate polypyridine ligand 6,6′-bis[bis(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine. Inorg Chim Acta. 2017;467:93–8.Google Scholar
  30. 30.
    Melchior A, Gaillard C, Gràcia Lanas S, Tolazzi M, Billard I, Georg S, et al. Nickel(II) complexation with nitrate in dry [C4mim][Tf2N] ionic liquid: a spectroscopic, microcalorimetric, and molecular dynamics study. Inorg Chem. 2016;55:3498–507.PubMedGoogle Scholar
  31. 31.
    Credendino R, Minenkov Y, Liguori D, Piemontesi F, Melchior A, Morini G, et al. Accurate experimental and theoretical enthalpies of association of TiCl4 with typical Lewis bases used in heterogeneous Ziegler–Natta catalysis. Phys Chem Chem Phys. 2017;19:26996–7006.PubMedGoogle Scholar
  32. 32.
    Cavallo L, Del Piero S, Ducéré J-M, Fedele R, Melchior A, Morini G, et al. Key interactions in heterogeneous Ziegler–Natta catalytic systems: structure and energetics of TiCL4-Lewis base complexes. J Phys Chem C. 2007;111:4412–9.Google Scholar
  33. 33.
    Marcus Y. The properties of solvents. New York: Wiley; 1998.Google Scholar
  34. 34.
    Cassol A, Di Bernardo P, Zanonato P, Portanova R, Tolazzi M, Tomat G, et al. Silver(I)–polyamine systems in dimethyl sulphoxide. A thermodynamic and spectroscopic investigation. J Chem Soc Faraday Trans. 1989;1(85):2445–52.Google Scholar
  35. 35.
    Di Bernardo P, Zanonato PL, Bismondo A, Melchior A, Tolazzi M. Protonation and lanthanide(III) complexation equilibria of a new tripodal polyaza-polycatechol-amine. Dalton Trans. 2009;2009:4236–44.Google Scholar
  36. 36.
    Dau PV, Zhang Z, Gao Y, Parker BF, Dau PD, Gibson JK, et al. Thermodynamic, structural, and computational investigation on the complexation between UO2 2+ and amine-functionalized diacetamide ligands in aqueous solution. Inorg Chem. 2018;57:2122–31.PubMedGoogle Scholar
  37. 37.
    Endrizzi F, Melchior A, Tolazzi M, Rao L. Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies. Dalton Trans. 2015;44:13835–44.PubMedGoogle Scholar
  38. 38.
    Veclani D, Melchior A, Tolazzi M, Cerón-Carrasco JP. Using theory to reinterpret the kinetics of monofunctional platinum anticancer drugs: stacking matters. J Am Chem Soc. 2018;140:14024–7.PubMedGoogle Scholar
  39. 39.
    Gans P, Sabatini A, Vacca A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996;43:1739–53.PubMedGoogle Scholar
  40. 40.
    Christensen JJ, Hansen L, Izatt R. Handbook of proton ionization heats and related thermodynamic quantities. New York: Wiley; 1976.Google Scholar
  41. 41.
    Cassol A, Di Bernardo P, Portanova R, Tolazzi M, Tomat G, Zanonato PL. Thermodynamic parameters of the complexation of uranyl(VI) by diethylenetriamine in dimethyl sulfoxide. Radiochim Acta. 1993;61:163.Google Scholar
  42. 42.
    Arnek R. High-speed computers as a supplement to graphical methods LETAGROP to calorimetric titrations. Ark Kemi. 1970;32:81–8.Google Scholar
  43. 43.
    Polese P, Tolazzi M, Melchior A. cEST: a flexible tool for calorimetric data analysis. J Therm Anal Calorim. 2018;134:1317–26.Google Scholar
  44. 44.
    Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc. 2008;120:215–41.Google Scholar
  45. 45.
    Zhao Y, Truhlar DG. Applications and validations of the Minnesota density functionals. Chem Phys Lett. 2011;502:1–13.Google Scholar
  46. 46.
    Mardirossian N, Head-gordon M. How accurate are the Minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J Chem Theory Comput. 2016;12:4303–25.PubMedGoogle Scholar
  47. 47.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta. 1990;77:123–41.Google Scholar
  48. 48.
    Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105:2999–3094.PubMedGoogle Scholar
  49. 49.
    Persson I, Nilsson KB. Coordination chemistry of the solvated silver(I) ion in the oxygen donor solvents water, dimethyl sulfoxide, and N, N′-dimethylpropyleneurea. Inorg Chem. 2006;45:7428–34.PubMedGoogle Scholar
  50. 50.
    Tsutsui Y, Sugimoto K-I, Wasada H, Inada Y, Funahashi S. EXAFS and ab initio molecular orbital studies on the structure of solvated silver(I) ions. J Phys Chem A. 1997;101:2900–5.Google Scholar
  51. 51.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 Revision B.01. Wallingford, CT: Gaussian Inc. 2016.Google Scholar
  52. 52.
    Guedens WJ, Yperman J, Mullens J, Van Poucke LC. Silver(I) complex formation with 1,4-diaminobutane and 1,5-diaminopentane: a potentiometric study in 1.0 M KNO3. J Coord Chem. 1999;47:17–29.Google Scholar
  53. 53.
    Ahrland S. Complex equilibria, solvation and solubility. Pure Appl Chem. 1990;62:2077–82.Google Scholar
  54. 54.
    Melchior A, Tolazzi M. Thermodynamics of complex formation in dimethylsulfoxide: the case of Co(II) complexes with nitrogen donor ligands and their O2 adducts. Inorg Chim Acta. 2019;493:91–101.Google Scholar
  55. 55.
    Gritzner G. Single-ion transfer properties: a measure of ion-solvation in solvents and solvent mixtures. Electrochim Acta. 1998;44:73–83.Google Scholar
  56. 56.
    Del Piero S, Fedele R, Melchior A, Portanova R, Tolazzi M, Zangrando E. Solvation effects on the stability of silver(I) complexes with pyridine-containing ligands studied by thermodynamic and DFT methods. Inorg Chem. 2007;46:4683–91.PubMedGoogle Scholar
  57. 57.
    Del Piero S, Melchior A, Menotti D, Tolazzi M, Dossing A. Solvent effect on the thermodynamics of Ag(I) coordination to tripodal polypyridine ligands. J Therm Anal Calorim. 2009;97:845–51.Google Scholar
  58. 58.
    Cotton FA, Wilkinson G. Advanced inorganic chemistry. New York: Wiley; 1980.Google Scholar
  59. 59.
    Fox BS, Beyer MK, Bondybey VE. Coordination chemistry of silver cations. J Am Chem Soc. 2002;124:13613–23.PubMedGoogle Scholar
  60. 60.
    Holland PM. The thermochemical properties of gas-phase transition metal ion complexes. J Chem Phys. 1982;76:4195.Google Scholar
  61. 61.
    Lee EC, Lee HM, Tarakeshwar P, Kim KS. Structures, energies, and spectra of aqua-silver (I) complexes. J Chem Phys. 2003;119:7725–36.Google Scholar
  62. 62.
    Ren C, Zhu H, Yang G, Chen X. Syntheses and crystal structures of five two-dimensional networks constructed from staircase-like silver(I) thiocyanate chains and bridging polyamines. J Chem Soc Dalton Trans. 2001;2001:85–90.Google Scholar
  63. 63.
    Cai YJ, Shi L, Zhu HL. Synthesis and crystal structures of two polymeric silver(I) complexes with polyamines and terephthalic acid. Russ J Coord Chem. 2010;36:497–501.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze ChimicheUniversità di PadovaPaduaItaly
  2. 2.Laboratori di Chimica, Dipartimento PolitecnicoUniversità di UdineUdineItaly

Personalised recommendations