Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1997–2004 | Cite as

Porous carbon fibers prepared from cellulose

Characterization of microstructure and water sorption properties
  • Igor MaťkoEmail author
  • Ondrej Šauša
  • Katarína Čechová
  • Ivan Novák
  • Helena Švajdlenková
  • Dušan Berek
  • Michal Pecz


A series of porous carbon microfibers has been prepared by controlled carbonization of cellulose precursors. Their surface area determined by the BET method from argon absorption ranges from about 1 to almost 1500 m2 g−1. The pore sizes of fibers determined with help of positron annihilation lifetime spectroscopy are in the range below 1 nm. Dried samples of the resulting material were imbued with water in order to characterize their water sorption abilities. Amount of absorbed water was precisely determined by thermogravimetry. Carbon fibers filled with water were analyzed with differential scanning calorimetry and positron annihilation lifetime spectroscopy. It has been shown that water sorption abilities of fibers are not simply proportional to their surface area; there exists a significant impact of other factors.


Porous carbon fibers Thermogravimetry DSC Positron annihilation lifetime spectroscopy 



The authors thank Dipl.-Ing. D. Kečkéšová for performing the XRD analysis. The work was partially supported by the Slovak Grant Agencies VEGA (Project 2/0127/17) and APVV (Project 16-0369).


  1. 1.
    Inagaki M. Porous carbons. In: Inagaki M, editor. New carbons—control of structure and functions. Amsterdam: Elsevier; 2000. p. 124–45. Scholar
  2. 2.
    Liu N, Wang J, Yang J, Han G, Yan F. Effects of nano-sized and micro-sized carbon fibers on the interlaminar shear strength and tribological properties of high strength glass fabric/phenolic laminate in water environment. Compos B Eng. 2015;68:92–9.CrossRefGoogle Scholar
  3. 3.
    Novák I, Berek D., Munka K, Varga S, Karácsonyová M. Method of preparation of composite sorbents for removal of contaminants from water. Slovak Patent 288563-2018.Google Scholar
  4. 4.
    Bilgin Simsek E, Novak I, Berek D, Beker U. Novel composite sorbents based on carbon fibers decorated with ferric hydroxides—arsenic removal. Asia-Pac J Chem Eng. 2018. Scholar
  5. 5.
    Novák I, Berek D. Method for preparation of microporous fibrous carbon from cellulosic precursors. Slovak Patent 288507-2017.Google Scholar
  6. 6.
    Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials. Review part 1. J Therm Anal Calorim. 2011;105:811–21.CrossRefGoogle Scholar
  7. 7.
    Riikonen J, Salonen J, Lehto VP. Utilising thermoporometry to obtain new insights into nanostructured materials. Review part 2. J Therm Anal Calorim. 2011;105:823–30.CrossRefGoogle Scholar
  8. 8.
    Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.CrossRefGoogle Scholar
  9. 9.
    Illeková E, Miklošovičová M, Šauša O, Berek D. Solidification and melting of cetane confined in the nanopores of silica gel. J Therm Anal Calorim. 2012;108:497–503.CrossRefGoogle Scholar
  10. 10.
    Illeková E, Krištiak J, Macová E, Maťko I, Šauša O. Rearrangement of hexadecane molecules confined in the nanopores of a controlled I pore glass using positronannihilation and differential scanning calorimetry. J Therm Anal Calorim. 2013;113:1187–96.CrossRefGoogle Scholar
  11. 11.
    Iskrová M, Majerník V, Illeková E, Šauša O, Berek D, Krištiak J. Free volume seen by positronium in bulk and confined molecular liquid. Mater Sci Forum. 2009;607:235–7.CrossRefGoogle Scholar
  12. 12.
    Šauša O, Illeková E, Krištiak J, Berek D, Macová E. PALS and DSC study of partially filled nanopores by E hexadecane. J Phys Conf Ser. 2013;443:012059.CrossRefGoogle Scholar
  13. 13.
    Illeková E, Macová E, Majerník V, Maťko I, Šauša O. Anomalous thermal expansion of thin cetane layer solidified at the inner surface of confining nanoporous silica gel. J Therm Anal Calorim. 2014;116:753–8.CrossRefGoogle Scholar
  14. 14.
    Maťko I, Šauša O, Macová E, Berek D. Combined study of confined water in controlled pore glasses by differential scanning calorimetry and positron annihilation lifetime spectroscopy. J Therm Anal Calorim. 2015;121:163–8.CrossRefGoogle Scholar
  15. 15.
    Maťko I, Šauša O, Čechová K, Jesenák K. Study of water in Ca-montmorillonite by thermal analysis and positron annihilation lifetime spectroscopy. J Therm Anal Calorim. 2018;133:247–54.CrossRefGoogle Scholar
  16. 16.
    Goworek T. Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann Univ Mariae Curie-Sklodowska Lublin-Polonia. 2014;69:1–110.CrossRefGoogle Scholar
  17. 17.
    Bilgin Simsek E, Novak I, Sausa O, Berek D. Microporous carbon fibers prepared from cellulose as efficient sorbents for removal of chlorinated phenols. Res Chem Intermed. 2017;43:503–22. Scholar
  18. 18.
    Bilgin Simsek E, Saloglu D, Ozcan N, Novak I, Berek D. Carbon fiber embedded chitosan/PVA composites for decontamination of endocrine disruptor bisphenol-A from water. J Taiwan Inst Chem Eng. 2017;70:291–301.CrossRefGoogle Scholar
  19. 19.
    Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19.CrossRefGoogle Scholar
  20. 20.
    Kansy J. Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl Instrum Methods A. 1996;374:235–44.CrossRefGoogle Scholar
  21. 21.
    Tao SJ. Positronium annihilation in molecular substances. J Chem Phys. 1972;56:5499–510.CrossRefGoogle Scholar
  22. 22.
    Eldrup M, Lightbody D, Sherwood JN. The temperature dependence of positron lifetime in solid pivalic acid. Chem Phys. 1981;63:51–8.CrossRefGoogle Scholar
  23. 23.
    Liao KS, Chen H, Awad S, Yuan JP, Hung WS, Lee KR, Lai JY, Hu CC, Jean YC. Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules. 2011;44:6818–26.CrossRefGoogle Scholar
  24. 24.
    Schultrich H, Schultrich B. TEM-simulation of amorphous carbon films: influence of supercell packaging. Ultramicroscopy. 2001;88:111–25.CrossRefGoogle Scholar
  25. 25.
    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc. 2008;130:12787–93.CrossRefGoogle Scholar
  26. 26.
    Morishige K, Yasunaga H, Denoyel R, Wernert V. Pore-blocking-controlled freezing of water in cagelike pores of KIT-5. J Phys Chem C. 2007;111:9488–95.CrossRefGoogle Scholar
  27. 27.
    Janssen AH, Talsma H, van Steenbergen MJ, de Jong KP. Homogeneous nucleation of water in mesoporous zeolite cavities. Langmuir. 2004;20:41–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Polymer InstituteSlovak Academy of SciencesBratislavaSlovakia
  3. 3.Faculty of Mathematics, Physics and InformaticsComenius University in BratislavaBratislavaSlovakia

Personalised recommendations