Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 5, pp 3301–3310 | Cite as

Calorimetric study of siloxane dendrimer of the third generation with trimethylsilyl terminal groups

  • Semen S. Sologubov
  • Alexey V. MarkinEmail author
  • Yuliya A. Sarmini
  • Yanina S. Samosudova
  • Natalia N. Smirnova
  • Konstantin L. Boldyrev
  • Elena A. Tatarinova
  • Ivan B. Meshkov
  • Aziz M. Muzafarov
Article
  • 66 Downloads

Abstract

The molar heat capacity of siloxane dendrimer of the third generation with trimethylsilyl terminal groups G3[OSi(CH3)3]24 was determined by precise adiabatic calorimetry and differential scanning calorimetry over the temperature range T = (6–570) K for the first time. The low-temperature structural anomaly and the glass transition were observed in the above temperature range, and the standard thermodynamic characteristics of the revealed transformations were determined and analyzed. The fundamental thermodynamic functions such as the enthalpy [H°(T) − H°(0)], the entropy [S°(T) − S°(0)], and the Gibbs energy [G°(T) − H°(0)] were calculated for the range from T → 0 to 570 K based on the experimentally determined molar heat capacity of the investigated compound. The standard entropy of formation ΔfS° of dendrimer G3[OSi(CH3)3]24 was evaluated at T = 298.15 K. The thermal stability of the studied compound was investigated by thermogravimetric analysis. The standard thermodynamic properties of siloxane dendrimer G3[OSi(CH3)3]24 were compared and discussed with the previously reported data for the studied G3 carbosilane dendrimers with different functional terminal groups on the surface layer.

Keywords

Organosilicon dendrimers Adiabatic calorimetry DSC Heat capacity Glass transition Thermodynamic functions 

Notes

Acknowledgements

This work was performed with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Contract No. 4.5706.2017/8.9), the Russian Foundation for Basic Research (Project No. 19-03-00248), and the Russian Science Foundation (Project No. 18-13-00411).

Supplementary material

10973_2019_8693_MOESM1_ESM.doc (189 kb)
Supplementary material 1 (DOC 189 kb)

References

  1. 1.
    Fréchet JMJ, Tomalia DA. Dendrimers and other dendritic polymers. Chichester: Wiley; 2001.  https://doi.org/10.1002/0470845821.CrossRefGoogle Scholar
  2. 2.
    Newkome GR, Moorefield CN, Vögtle F. Dendrimers and dendrons: concepts, syntheses, applications. Weinheim: Wiley; 2001.  https://doi.org/10.1002/3527600612.CrossRefGoogle Scholar
  3. 3.
    Muzafarov AM, Vasilenko NG, Tatarinova EA, Ignat’eva GM, Myakushev VM, Obrezkova MA, Meshkov IB, Voronina NV, Novozhilov OV. Macromolecular nano-objects as a promising direction of polymer chemistry. Polym Sci Ser C. 2011;53:48–60.  https://doi.org/10.1134/S1811238211070022.CrossRefGoogle Scholar
  4. 4.
    Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis. 1978;1978:155–8.  https://doi.org/10.1055/s-1978-24702.CrossRefGoogle Scholar
  5. 5.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.  https://doi.org/10.1295/polymj.17.117.CrossRefGoogle Scholar
  6. 6.
    Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem. 1985;50:2003–4.  https://doi.org/10.1021/jo00211a052.CrossRefGoogle Scholar
  7. 7.
    Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47.  https://doi.org/10.1021/ja00177a027.CrossRefGoogle Scholar
  8. 8.
    Rebrov EA, Muzafarov AM, Papkov VS, Zhdanov AA. Volume-growing polyorganosiloxanes. Proc USSR Acad Sci. 1989;309:376–80.Google Scholar
  9. 9.
    Muzafarov AM, Rebrov EA, Papkov VS. Three-dimensionally growing polyorganosiloxanes. Possibilities of molecular construction in highly functional systems. Russ Chem Rev. 1991;60:807–14.  https://doi.org/10.1070/RC1991v060n07ABEH001112.CrossRefGoogle Scholar
  10. 10.
    Morikawa A, Kakimoto M, Imai Y. Synthesis and characterization of new polysiloxane starburst polymers. Macromolecules. 1991;24:3469–74.  https://doi.org/10.1021/ma00012a001.CrossRefGoogle Scholar
  11. 11.
    Muzafarov AM, Tatarinova EA, Vasilenko NG, Ignat’eva GM. Organosilicon dendrimers and irregular hyperbranched polymers. In: Lee VY, editor. Organosilicon compounds: experiment (physico-chemical studies) and applications. Cambridge: Academic Press; 2017. p. 323–82.  https://doi.org/10.1016/B978-0-12-814213-4.00008-3.CrossRefGoogle Scholar
  12. 12.
    Lang H, Lühmann B. Siloxane and carbosiloxane based dendrimers: synthesis, reaction chemistry, and potential applications. Adv Mater. 2001;13:1523–40.  https://doi.org/10.1002/1521-4095(200110)13:20%3C1523:AID-ADMA1523%3E3.0.CO;2-P.CrossRefGoogle Scholar
  13. 13.
    Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110:1857–959.  https://doi.org/10.1021/cr900327d.CrossRefPubMedGoogle Scholar
  14. 14.
    Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–15.  https://doi.org/10.1016/j.addr.2012.09.030.CrossRefGoogle Scholar
  15. 15.
    Yang J, Zhang Q, Chang H, Cheng Y. Surface-engineered dendrimers in gene delivery. Chem Rev. 2015;115:5274–300.  https://doi.org/10.1021/cr500542t.CrossRefPubMedGoogle Scholar
  16. 16.
    Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules. 2016;17:3103–14.  https://doi.org/10.1021/acs.biomac.6b00929.CrossRefPubMedGoogle Scholar
  17. 17.
    Lebedev BV, Ryabkov MV, Tatarinova EA, Rebrov EA, Muzafarov AM. Thermodynamic properties of the first to fifth generations of carbosilane dendrimers with allyl terminal groups. Russ Chem Bull. 2003;52:545–51.  https://doi.org/10.1023/A:1023977916394.CrossRefGoogle Scholar
  18. 18.
    Smirnova NN, Stepanova OV, Bykova TA, Markin AV, Muzafarov AM, Tatarinova EA, Myakushev VD. Thermodynamic properties of carbosilane dendrimers of the third to the sixth generations with terminal butyl groups in the range from T → 0 to 600 K. Thermochim Acta. 2006;440:188–94.  https://doi.org/10.1016/j.tca.2005.11.009.CrossRefGoogle Scholar
  19. 19.
    Markin AV, YaS Samosudova, Smirnova NN, Tatarinova EA, Bystrova AV, Muzafarov AM. Thermodynamics of carbosilane dendrimers with diundecylsilyl and diundecylsiloxane terminal groups. J Therm Anal Calorim. 2011;105:663–76.  https://doi.org/10.1007/s10973-010-1199-5.CrossRefGoogle Scholar
  20. 20.
    Smirnova NN, Markin AV, Samosudova YS, Ignat’eva GM, Katarzhnova EY, Muzafarov AM. Thermodynamics of G-3(D4) and G-6(D4) carbosilanecyclosiloxane dendrimers. Russ J Phys Chem A. 2013;87:552–9.  https://doi.org/10.1134/S0036024413040262.CrossRefGoogle Scholar
  21. 21.
    Smirnova NN, Markin AV, Letyanina IA, Sologubov SS, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups. Russ J Phys Chem A. 2014;88:735–41.  https://doi.org/10.1134/S0036024414050306.CrossRefGoogle Scholar
  22. 22.
    Markin AV, Sologubov SS, Smirnova NN, Knyazev AV, Mączka M, Ptak M, Novozhilova NA, Tatarinova EA, Muzafarov AM. Calorimetric and infrared studies of carbosilane dendrimers of the third generation with ethyleneoxide terminal groups. Thermochim Acta. 2015;617:144–51.  https://doi.org/10.1016/j.tca.2015.08.028.CrossRefGoogle Scholar
  23. 23.
    Sologubov SS, Markin AV, Smirnova NN, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the sixth generation with ethylene oxide terminal groups. J Phys Chem B. 2015;119:14527–35.  https://doi.org/10.1021/acs.jpcb.5b06786.CrossRefPubMedGoogle Scholar
  24. 24.
    Sologubov SS, Markin AV, Smirnova NN, Rybakova YA, Novozhilova NA, Tatarinova EA, Muzafarov AM. Calorimetric study of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups. J Therm Anal Calorim. 2016;125:595–606.  https://doi.org/10.1007/s10973-016-5301-5.CrossRefGoogle Scholar
  25. 25.
    Smirnova NN, Sologubov SS, Sarmini YA, Markin AV, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups. Russ J Phys Chem A. 2017;91:2317–25.  https://doi.org/10.1134/S0036024417110279.CrossRefGoogle Scholar
  26. 26.
    Sologubov SS, Markin AV, Smirnova NN, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of a first-generation carbosilane dendrimer with terminal phenylethyl groups. Russ J Phys Chem A. 2018;92:235–43.  https://doi.org/10.1134/S0036024418010260.CrossRefGoogle Scholar
  27. 27.
    Boldyrev K, Tatarinova E, Meshkov I, Vasilenko N, Buzin M, Novikov R, Vasil’ev V, Shtykova E, Feigin L, Bystrova A, Chvalun S, Muzafarov A. New approach to the synthesis of polymethylsilsesquioxane dendrimers. Polymer. 2019;174:159–69.  https://doi.org/10.1016/j.polymer.2019.04.030.CrossRefGoogle Scholar
  28. 28.
    Kurbatov AO, Balabaev NK, Mazo MA, Kramarenko EY. Molecular dynamics simulations of single siloxane dendrimers: molecular structure and intramolecular mobility of terminal groups. J Chem Phys. 2018;148:014902-1–-10.  https://doi.org/10.1063/1.5009988.CrossRefGoogle Scholar
  29. 29.
    Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T. Atomic weights of the elements 2013 (IUPAC technical report). Pure Appl Chem. 2016;88:265–91.  https://doi.org/10.1515/pac-2015-0305.CrossRefGoogle Scholar
  30. 30.
    Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37.  https://doi.org/10.1006/jcht.1996.0173.CrossRefGoogle Scholar
  31. 31.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204.  https://doi.org/10.1016/S0040-6031(99)00009-X.CrossRefGoogle Scholar
  32. 32.
    Höhne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. 2nd ed. Berlin: Springer; 2003.  https://doi.org/10.1007/978-3-662-06710-9.CrossRefGoogle Scholar
  33. 33.
    Drebushchak VA. Calibration coefficient of a heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8.  https://doi.org/10.1007/s10973-004-0586-1.CrossRefGoogle Scholar
  34. 34.
    Della Gatta G, Richardson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC technical report). Pure Appl Chem. 2006;78:1455–76.  https://doi.org/10.1351/pac200678071455.CrossRefGoogle Scholar
  35. 35.
    Kaisersberger E, Janoschek J, Wassmer E. A heat flux DSC for enthalpy and specific heat determinations to 1700 K. Thermochim Acta. 1989;148:499–505.  https://doi.org/10.1016/0040-6031(89)85253-0.CrossRefGoogle Scholar
  36. 36.
    ASTM E1269-11. Standard test method for determining specific heat capacity by differential scanning calorimetry. West Conshohocken: ASTM International; 2018. https://astm.org/Standards/E1269.htm. Accessed 24 June 2019.
  37. 37.
    ISO 11357-4:2014. Plastics—differential scanning calorimetry (DSC)—part 4: determination of specific heat capacity. Geneva: International Organization for Standardization; 2014. https://iso.org/standard/65087.html. Accessed 24 June 2019.
  38. 38.
    Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46.  https://doi.org/10.1063/1.1696442.CrossRefGoogle Scholar
  39. 39.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.  https://doi.org/10.1021/cr60135a002.CrossRefGoogle Scholar
  40. 40.
    Bestul AB, Chang SS. Excess entropy at glass transformation. J Chem Phys. 1964;40:3731–3.  https://doi.org/10.1063/1.1725086.CrossRefGoogle Scholar
  41. 41.
    Wooley KL, Hawker CJ, Pochan JM, Fréchet JMJ. Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules. 1993;26:1514–9.  https://doi.org/10.1021/ma00059a006.CrossRefGoogle Scholar
  42. 42.
    Debye P. Zur Theorie der spezifischen Wärmen. Ann Phys. 1912;344:789–839.  https://doi.org/10.1002/andp.19123441404.CrossRefGoogle Scholar
  43. 43.
    McCullough JP, Scott DW. Experimental thermodynamics. Volume I. Calorimetry of non-reacting systems. London: Butterworth & Co., Ltd.; 1968.Google Scholar
  44. 44.
    Chase MW Jr. NIST-JANAF thermochemical tables. 4th ed. J Phys Chem Ref Data, Monograph No. 9. 1998;1–1951.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Semen S. Sologubov
    • 1
  • Alexey V. Markin
    • 1
    Email author
  • Yuliya A. Sarmini
    • 1
  • Yanina S. Samosudova
    • 1
  • Natalia N. Smirnova
    • 1
  • Konstantin L. Boldyrev
    • 2
    • 3
  • Elena A. Tatarinova
    • 2
  • Ivan B. Meshkov
    • 2
  • Aziz M. Muzafarov
    • 2
    • 3
  1. 1.National Research Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of SciencesMoscowRussia
  3. 3.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia

Personalised recommendations