Advertisement

The effect of inlet temperature on the irreversibility characteristics of non-Newtonian hybrid nano-fluid flow inside a minichannel counter-current hairpin heat exchanger

  • Yulin Ma
  • Majid Jafari
  • Azeez A. Barzinjy
  • B. Mahmoudi
  • Samir M. Hamad
  • Masoud AfrandEmail author
Article
  • 33 Downloads

Abstract

The goal of this work is to examine the influence of entering temperature on the entropy generation characteristics of a minichannel hairpin heat exchanger with counter-flow configuration. The working fluids are water and hybrid water–Fe3O4/carbon nanotubes (CNTs) nano-fluid (NF) that flows through the annulus side and tube side of the heat exchanger, respectively. It is assumed that the NF is non-Newtonian, and its thermal conductivity and viscosity are temperature dependent. The impact of volume fraction of Fe3O4 (\(\varphi_{\text{FF}}\)) and CNT nanoadditives (\(\varphi_{\text{CNT}}\)) as well as the Reynolds number of NF (\(Re_{\text{nf}}\)) on the Bejan number and irreversibilities due to heat transfer and fluid friction are also assessed. It was found that augmenting the temperature difference between the fluids entering the heat exchanger results in a decrease in the frictional irreversibility and an increase in the global thermal and total irreversibilities and global Bejan number. Additionally, the outcomes depicted that the global frictional and total irreversibilities and the global Bejan number intensify by boosting the \(Re_{\text{nf}}\) and \(\varphi_{\text{CNT}}\), while the increase of \(\varphi_{\text{FF}}\) first leads to the reduction and then the increase of these parameters.

Keywords

Hybrid nano-fluid Hairpin heat exchanger Inlet temperature Irreversibility Carbon nanotube Fe3O4 

List of symbols

\(Be\)

Bejan number

\(c_{\text{p}}\)

Specific heat (J kg−1 K−1)

\(d_{\text{in}}\)

Inner diameter (m)

\(d_{\text{out}}\)

Outer diameter (m)

\(k\)

Thermal conductivity (W m−1 K−1)

\(p\)

Pressure (Pa)

\(Re\)

Reynolds number

\(\dot{S}_{{{\text{g}},{\text{f}}}}^{'''}\)

Local frictional entropy generation rate (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{h}}}}^{'''}\)

Local thermal entropy generation rate (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{t}}}}^{'''}\)

Local total entropy generation rate (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{f}}}}\)

Global frictional entropy generation rate (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{h}}}}\)

Global thermal entropy generation rate (W m−3 K−1)

\(\dot{S}_{{{\text{g}},{\text{t}}}}\)

Global total entropy generation rate (W m−3 K−1)

T

Temperature (K)

\(u_{{{\text{in}},{\text{nf}}}}\)

Inlet velocity (m s−1)

V

Velocity (m s−1)

Greek symbols

γ

Shear rate (s−1)

μ

Viscosity (kg m−1 s−1)

ρ

Density (kg m−3)

Subscripts

nf

Nanofluid

w

Water

Notes

Acknowledgements

This work is partially supported by the National Key Research and Development Program of China (2016YFB0100903) and JITRI Suzhou Automotive Research Institute Project (CEC20190404).

References

  1. 1.
    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 1995;231:99–105.Google Scholar
  2. 2.
    Al-Rashed AAAA, Shahsavar A, Rasooli O, Moghimi MA, Karimipour A, Tran MD. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water–silver nano-fluid in a wavy walled microchannel heat sink. Int Commun Heat Mass Transf. 2019;104:118–26.CrossRefGoogle Scholar
  3. 3.
    Al-Rashed AAAA, Shahsavar A, Entezari S, Moghimi MA, Adio SA, Nguyen TK. Numerical investigation of non-Newtonian water–CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink: thermal performance and thermodynamic considerations. Appl Therm Eng. 2019;155:247–58.CrossRefGoogle Scholar
  4. 4.
    Alsarraf J, Moradikazerouni A, Shahsavar A, Afrand M, Salehipour H, Tran MD. Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model. Phys A. 2019;520:275–88.CrossRefGoogle Scholar
  5. 5.
    Nakhchi ME, Esfahani JA. Numerical investigation of turbulent Cu–water nanofluid in heat exchanger tube equipped with perforated conical rings. Adv Powder Technol. 2019;30:1338–47.CrossRefGoogle Scholar
  6. 6.
    Nakhchi ME, Esfahani JA. Cu–water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94.CrossRefGoogle Scholar
  7. 7.
    Nakhchi ME, Esfahani JA. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2019.  https://doi.org/10.1007/s10973-019-08169-w.CrossRefGoogle Scholar
  8. 8.
    Rashidi MM, Abelman S, Freidooni Mehr N. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25.CrossRefGoogle Scholar
  9. 9.
    Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.CrossRefGoogle Scholar
  10. 10.
    Shahsavar A, Khanmohammadi S, Toghraie D, Salehipour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liq. 2019;276(2019):850–60.CrossRefGoogle Scholar
  11. 11.
    Sheikholeslami M, Rashidi MM, Ganji DD. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid. Comput Methods Appl Mech Eng. 2015;294:299–312.CrossRefGoogle Scholar
  12. 12.
    Garoosi F, Jahanshaloo L, Rashidi MM, Badakhsh A, Ali ME. Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl Math Comput. 2015;254:183–203.Google Scholar
  13. 13.
    Freidoonimehr N, Rashidi MH, Mahmud S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci. 2015;87:136–45.CrossRefGoogle Scholar
  14. 14.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic field. Exp Therm Fluid Sci. 2016;76:1–11.CrossRefGoogle Scholar
  15. 15.
    Rashed AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int J Heat Mass Transf. 2017;104:878–89.CrossRefGoogle Scholar
  16. 16.
    Shahsavar A, Moradi M, Bahiraei M. Heat transfer and entropy generation optimization for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a concentric annulus. J Taiwan Inst Chem Eng. 2018;84:28–40.CrossRefGoogle Scholar
  17. 17.
    Shahsavar A, Bahiraei M, Ansarian R. Effect of line dipole magnetic field on entropy generation of Mn–Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technol. 2018;340:370–9.CrossRefGoogle Scholar
  18. 18.
    Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135:1521–32.CrossRefGoogle Scholar
  19. 19.
    Shahsavar A, Rahimi Z, Salehipour H. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluid in a horizontal double-pipe minichannel heat exchanger. Heat Mass Transf. 2019;55:1741–51.CrossRefGoogle Scholar
  20. 20.
    Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int J Heat Mass Transf. 2018;125:82–103.CrossRefGoogle Scholar
  21. 21.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.CrossRefGoogle Scholar
  22. 22.
    Shahsavar A, Saghafian M, Salimpour MR, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.CrossRefGoogle Scholar
  23. 23.
    Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15.CrossRefGoogle Scholar
  24. 24.
    Liu WI, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen TK. Impact of oscillating magnetic field on the thermal-conductivity of water–Fe3O4 and water–Fe3O4/CNT ferro-fluids: experimental study. J Magn Magn Mater. 2019;484:258–65.CrossRefGoogle Scholar
  25. 25.
    Karimi A, Al-Rashed AAAA, Afrand M, Mahian O, Wongwises S, Shahsavar A. The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model. Int J Mech Sci. 2019;156:397–409.CrossRefGoogle Scholar
  26. 26.
    Shahsavar A, Godini A, Talebizadeh Sardari P, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchange. J Therm Anal Calorim. 2019;137:1031–43.CrossRefGoogle Scholar
  27. 27.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD convective heat transfer of Ag–MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26.CrossRefGoogle Scholar
  28. 28.
    Safaei MR, Hajizadeh A, Afrand M, Qi C, Yarmand H, Zulkifli NWBM. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO–TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys A. 2019;519:209–16.CrossRefGoogle Scholar
  29. 29.
    Nadooshan AA, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: newtonian and non-Newtonian behavior. Mol Liq. 2018;253:169–77.CrossRefGoogle Scholar
  30. 30.
    Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.CrossRefGoogle Scholar
  31. 31.
    Goodarzi M, Kherbeet AS, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Daheri M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.CrossRefGoogle Scholar
  32. 32.
    Shahsavar A, Rahimi Z, Bahiraei M. Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles. Energy Convers Manag. 2017;150:37–47.CrossRefGoogle Scholar
  33. 33.
    Karimi A, Afrand M. Numerical study on thermal performance of an air-cooled heat exchanger: effects of hybrid nanofluid, pipe arrangement and cross section. Energy Convers Manag. 2017;164:615–28.CrossRefGoogle Scholar
  34. 34.
    Diglio G, Roselli C, Sasso M, Channabasappa UJ. Borehole heat exchanger with nanofluids as heat carrier. Geothermics. 2018;72:112–23.CrossRefGoogle Scholar
  35. 35.
    Rahimi A, Surendar A, Kasaeipoor A, Hooshmand P, Malekshahi EH. Lattice Boltzmann simulation of nanofluid flow and heat transfer in a hollow multi-pipe heat exchanger considering nanoparticles’ shapes. Powder Technol. 2018;339:974–84.CrossRefGoogle Scholar
  36. 36.
    Bahiraei M, Berahmand M, Shahsavar A. Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Appl Therm Eng. 2017;125:1083–93.CrossRefGoogle Scholar
  37. 37.
    Guzman JEV, Hernandez-Arrieta I, Vicente W, Salinas-Vazquez M, Martinez-Espinosa E. Non-local entropy evolution in heat exchangers with elliptical and circular tube geometries, international. J Therm Sci. 2018;134:601–11.CrossRefGoogle Scholar
  38. 38.
    Dormohammadi R, Farzaneh-Gord M, Ebrahimi-Moghadam A, Ahmadi MH. Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels. J Mol Liq. 2018;269:229–40.CrossRefGoogle Scholar
  39. 39.
    Ebrahimi-Moghadam A, Jabari Moghadam A. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl Therm Eng. 2019;149:889–98.CrossRefGoogle Scholar
  40. 40.
    Al-Rashed AAAA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Khang Nguyen T. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Phys A Stat Mech Appl. 2019;521:724–36.CrossRefGoogle Scholar
  41. 41.
    Shahsavar A, Bahiraei M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol. 2017;318:441–50.CrossRefGoogle Scholar
  42. 42.
    Shahsavar A, Talebizadeh P, Toghraie D. Free convection heat transfer and entropy generation analysis of water–Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Methods Heat Fluid Flow. 2019;29:915–34.CrossRefGoogle Scholar
  43. 43.
    Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53:334–44.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Electromechanical and Automobile EngineeringHuanggang Normal UniversityHuanggangP.R. China
  2. 2.Suzhou Automotive Research InstituteTsinghua UniversitySuzhouChina
  3. 3.Department of Mechanical EngineeringKermanshah University of TechnologyKermanshahIran
  4. 4.Physics Education DepartmentTishk International University TIUErbil, Kurdistan RegionIraq
  5. 5.Physics Department, College of EducationSalahaddin University-ErbilKurdistan RegionIraq
  6. 6.Computer DepartmentCihan University-ErbilErbilIraq
  7. 7.Scientific Research CentreSoran UniversitySoran, Kurdistan RegionIraq
  8. 8.Laboratory of Magnetism and Magnetic Materials, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  9. 9.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations