Advertisement

Calculation and confirmation of the kinetic triplet of metallurgical coke gasification with carbon dioxide under isothermal conditions

  • Zhongsuo LiuEmail author
  • Qi Wang
Article
  • 10 Downloads

Abstract

The present study examines the usefulness of a compound kinetic calculation technology, a technology which is developed from the application of master plots as well as the Arrhenius plot and which is adopted to estimate the kinetic triplet (the mechanism function, the frequency factor, and the activation energy) of metallurgical coke gasification with carbon dioxide under isothermal conditions. We employed master plots for selecting a suitable mechanism function for gasification of metallurgical coke and discovered the Johnson–Mehl–Avrami–Erofe’ev–Kolmogorov model—[− ln(1 − x)]1/m (m = 0.57)—to be the optimum mechanism function. According to this mechanism function, we estimated the Arrhenius parameters (the frequency factor and the activation energy) from the Arrhenius plot, and they are 0.79 s−1 and 72.71 kJ mol−1, respectively; additionally, we established the correctness of kinetic results.

Keywords

Metallurgical coke Gasification Carbon dioxide Isothermal kinetics 

Notes

Acknowledgements

The present study has been sponsored by the National Natural Science Foundation of China (Nos. 51704149 and 51634004).

References

  1. 1.
    Kinnertová E, Slovák V. Kinetics of resorcinol–formaldehyde polycondensation by DSC. J Therm Anal Calorim. 2018;134(2):1215–22.CrossRefGoogle Scholar
  2. 2.
    Achilias DS, Tsagkalias IS. Investigation of radical polymerization kinetics of poly(ethylene glycol) methacrylate hydrogels via DSC and mechanistic or isoconversional models. J Therm Anal Calorim. 2018;134(2):1307–15.CrossRefGoogle Scholar
  3. 3.
    Sindhu NV, Muraleedharan K. Kinetic study of the multistep thermal behaviour of barium titanyl oxalate prepared via chemical precipitation method. J Therm Anal Calorim. 2019;136(3):1295–306.CrossRefGoogle Scholar
  4. 4.
    Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA, Zhuravkov SP. The oxidation kinetic study of mechanically milled ultrafine iron powders by thermogravimetric analysis. J Therm Anal Calorim. 2018;134(1):307–12.CrossRefGoogle Scholar
  5. 5.
    Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147(2):377–85.CrossRefGoogle Scholar
  6. 6.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82.CrossRefGoogle Scholar
  7. 7.
    Málek J, Koga N, Pérez-Maqueda LA, Criado JM. The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. J Therm Anal Calorim. 2013;113(3):1437–46.CrossRefGoogle Scholar
  8. 8.
    Moser G, Tschamber V, Schönnenbeck C, Brillard A, Brilhac J-F. Non-isothermal oxidation and kinetic analysis of pure magnesium powder. J Therm Anal Calorim. 2019;136(5):2145–55.CrossRefGoogle Scholar
  9. 9.
    Wang Z, Liang Y, Peng N, Peng B. The non-isothermal kinetics of zinc ferrite reduction with carbon monoxide. J Therm Anal Calorim. 2019;136(5):2157–64.CrossRefGoogle Scholar
  10. 10.
    Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416–58.Google Scholar
  11. 11.
    Avrami M. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  12. 12.
    Avrami M. Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  13. 13.
    Avrami M. Kinetics of phase change. III: granulation, phase change, and microstructures. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  14. 14.
    Erofe’ev BV. Generalized equation of chemical kinetics and its application in reactions involving solids. Dokl Akad Nauk SSSR. 1946;52:511–4.Google Scholar
  15. 15.
    Kolmogorov AN. A statistical theory for the recrystallization of metals. Izv Akad Nauk SSSR. 1937;1:355–60.Google Scholar
  16. 16.
    Vyazovkin S. Model-free kinetics. J Therm Anal Calorim. 2006;83(1):45–51.CrossRefGoogle Scholar
  17. 17.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  18. 18.
    Vyazovkin S. Thermal analysis. Anal Chem. 2004;76(12):3299–312.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanChina
  2. 2.Key Laboratory of Chemical Metallurgy Engineering Liaoning ProvinceUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations