Entropy generation in nonlinear mixed convective flow of nanofluid in porous space influenced by Arrhenius activation energy and thermal radiation

  • Fawaz E. Alsaadi
  • Ikram UllahEmail author
  • T. Hayat
  • Fuad E. Alsaadi


Here, nonlinear mixed convective flow of nanomaterials over a porous stretching sheet is discussed. The Buongiorno model is used in the mathematical modeling. Important aspects of Buongiorno model, i.e., Brownian movement and thermophoresis are addressed. Further impact of activation energy, viscous dissipation, Joule heating and nonlinear thermal radiation retained in energy and concentration expressions. Optimization of entropy generation rate is discussed. The governing systems are modeled through dimensionless variables. The series solutions are constructed via OHAM algorithm. Features of various sundry variables are interpreted and deliberated. Our analysis reveals that entropy enhances via higher estimation of Reynolds number, radiation and magnetic variables. Our analysis reveals that Bejan number shows decaying feature via Brinkman number and magnetic parameter.


Entropy generation Activation energy Nanomaterials Thermal radiation Nonlinear mixed convection 



This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-7-135-40). The authors, therefore acknowledge with thanks DSR for technical and financial support.


  1. 1.
    Bestman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14:389–96.CrossRefGoogle Scholar
  2. 2.
    Makinde OD, Olanrewaju PO, Charles WM. Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afr Mat. 2011;22:65–78.CrossRefGoogle Scholar
  3. 3.
    Maleque KA. Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J Thermodyn. 2013;2013:692516.CrossRefGoogle Scholar
  4. 4.
    Abbas Z, Sheikh M, Motsa SS. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy. 2016;95:12–20.CrossRefGoogle Scholar
  5. 5.
    Shafique Z, Mustafa M, Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 2016;6:627–33.CrossRefGoogle Scholar
  6. 6.
    Mustafa M, Khan JA, Hayat T, Alsaedi A. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int J Heat Mass Transf. 2017;108:1340–6.CrossRefGoogle Scholar
  7. 7.
    Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette–Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2018;8:502–12.CrossRefGoogle Scholar
  8. 8.
    Anuradha S, Yegammai M. MHD radiative boundary layer flow of nanofluid past a vertical plate with effects of binary chemical reaction and activation energy. Glob J Pure Appl Math. 2017;13:6377–92.Google Scholar
  9. 9.
    Khan AA, Masood F, Ellahi R, Bhatti MM. Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. J Mol Liq. 2018;258:186–95.CrossRefGoogle Scholar
  10. 10.
    Gireesha BJ, Mahanthesh B, Prasannakumara BC. Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source. Multidiscip Model Mater Struct. 2019;15:227–45.CrossRefGoogle Scholar
  11. 11.
    Hayat T, Khan AA, Bibi F, Farooq S. Activation energy and non-Darcy resistance in magneto peristalsis of Jeffrey material. J Phys Chem Solids. 2019;129:155–61.CrossRefGoogle Scholar
  12. 12.
    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publication- Fed. 1995;231:99–106.Google Scholar
  13. 13.
    Buongiorno J. Convective transfort in nanofluids. ASME J Heat Transf. 2006;128:240–50.CrossRefGoogle Scholar
  14. 14.
    Abu-Nada E, Oztop HF. Effect of inclination angle on natural convection in enclosure filled with Cu-water nanofluid. Int J Heat Fluid Flow. 2009;30:669–106.CrossRefGoogle Scholar
  15. 15.
    Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.CrossRefGoogle Scholar
  16. 16.
    Shehzad N, Zeeshan A, Ellahi R, Vafai K. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq. 2016;222:446–55.CrossRefGoogle Scholar
  17. 17.
    Waqas M, Khan MI, Hayat T, Alsaedi A, Khan MI. Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion. Eur Phys J Plus. 2017;132:132–40.CrossRefGoogle Scholar
  18. 18.
    Eid MR, Alsaedi A, Muhammad T, Hayat T. Comprehensive analysis of heat transfer of gold-blood nanofuid (Siskomodel) with thermal radiation. Results Phys. 2017;7:4388–93.CrossRefGoogle Scholar
  19. 19.
    Hayat T, Ullah I, Alsaedi A, Waqas M, Ahmad B. Three-dimensional mixed convection flow of Sisko nanoliquid. Int J Mech Sci. 2017;133:273–82.CrossRefGoogle Scholar
  20. 20.
    Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A. MHD forced convection fow of nanofuid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci. 2018;135:532–40.CrossRefGoogle Scholar
  21. 21.
    Hayat T, Ullah I, Alsaedi A, Asghar S. Flow of magneto Williamson nanoliquid towards stretching sheet with variable thickness and double stratification. Radiat Phys Chem. 2018;152:151–7.CrossRefGoogle Scholar
  22. 22.
    Manay E, Akyürek EF, Sahin B. Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 2018;9:615–24.CrossRefGoogle Scholar
  23. 23.
    Abbasia FM, Shanakhata I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater. 2019;474:434–41.CrossRefGoogle Scholar
  24. 24.
    Hatami M, Kheirkhah A, Ghanbari-Rad H, Jing D. Numerical heat transfer enhancement using different nanofluids flow through venturi and wavy tubes. Case Stud Therm Eng. 2019;13:100368.CrossRefGoogle Scholar
  25. 25.
    Ashlin TS, Mahanthesh B. Exact solution of non-coaxial rotating and non-linear convective flow of Cu–Al2O3–H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat. J Nanofluids. 2019;8:781–94.CrossRefGoogle Scholar
  26. 26.
    Shruthy M, Mahanthesh B. Rayleigh–Bénard convection in Casson and hybrid nanofluids: an analytical investigation. J. Nanofluids. 2019;8:222–9.CrossRefGoogle Scholar
  27. 27.
    Animasaun L, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135:873–86.CrossRefGoogle Scholar
  28. 28.
    Muhammad T, Lu DC, Mahanthesh B, Eid MR, Ramzan M, Dar A. Significance of Darcy–Forchheimer porous medium in nanofluid through carbon nanotubes. Commun Theor Phys. 2018;70:361.CrossRefGoogle Scholar
  29. 29.
    Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows–PartI: fundamentals and theory. Phys Rep. 2019;790:1–48.CrossRefGoogle Scholar
  30. 30.
    Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows–PartI: applications. Phys Rep. 2019;791:1–59.CrossRefGoogle Scholar
  31. 31.
    Bejan AA. Study of entropy generation in fundamental convective heat transfer. J Heat Transf. 1979;101:718–25.CrossRefGoogle Scholar
  32. 32.
    Ting TW, Hung YM, Guo N. Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. Int J Heat Mass Transf. 2015;81:862–77.CrossRefGoogle Scholar
  33. 33.
    Mkwizu MH, Makinde OD. Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling. CR Mec. 2015;343:38–56.CrossRefGoogle Scholar
  34. 34.
    Huang YY, Zhang LJ, Yang G, Wu JY. Secondary flow and entropy generation of laminar mixed convection in the entrance region of a horizontal square duct. J Heat Transf. 2017;140:7.Google Scholar
  35. 35.
    Aracely L, Guillermo I, Joel P, Joel M, Orlando L. Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int J Heat Mass Transf. 2017;107:982–94.CrossRefGoogle Scholar
  36. 36.
    Khan MI, Qayyum S, Hayat T, Alsaedi A, Khan MI. Investigation of Sisko fluid through entropy generation. J Mol Liq. 2018;257:155–63.CrossRefGoogle Scholar
  37. 37.
    Khan MI, Khan TA, Hayat T, Khan MI, Qayyum S, Alsaedi A, Ullah I. Irreversibility analysis and heat transfer performance of Williamson nanofluid over a stretched surface. Heat Transf Res. 2018;. Scholar
  38. 38.
    Li X, Faghri A. Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures. Energy. 2011;36:5416–23.CrossRefGoogle Scholar
  39. 39.
    Ibáñez G. Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions. Int J Heat Mass Transf. 2015;80:274–80.CrossRefGoogle Scholar
  40. 40.
    Liao SJ. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul. 2010;15:2003–16.CrossRefGoogle Scholar
  41. 41.
    Dehghan M, Manafian J, Saadatmandi A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Diff Equ. 2010;26:448–79.Google Scholar
  42. 42.
    Malvandi, Hedayati AF, Domairry G. Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. J Thermodyn. 2013;(2013):764827.Google Scholar
  43. 43.
    Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–56.CrossRefGoogle Scholar
  44. 44.
    Turkyilmazoglu M. An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat. 2016;30:1633–50.CrossRefGoogle Scholar
  45. 45.
    Hayat T, Muhammad K, Ullah I, Alsaedi A, Asghar S. Rotating squeezed flow with carbon nanotubes and melting heat. Phys Scr. 2018;94:035702.CrossRefGoogle Scholar
  46. 46.
    Rivlin RL, Ericksen JL. Stress deformation relations for isotropic materials. J Ration Mech Anal. 1955;4:323–425.Google Scholar
  47. 47.
    Hayat T, Ullah I, Waqas M, Alsaedi A. Attributes of activation energy and exponential based heat source in flow of Carreau fluid with cross-diffusion effects. J Non-Equilib Thermodyn 2018;44:. Scholar
  48. 48.
    Hayat T, Ullah I, Alsaedi A, Ahmad B. Simultaneous effects of non-linear mixed convection and radiative flow due to Riga-plate with double stratification. J Heat Transf. 2018;140:102008.CrossRefGoogle Scholar
  49. 49.
    Amala S, Mahanthesh B. Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current, nonlinear convection and heat absorption. J Nanofluids. 2018;7:1138–48.CrossRefGoogle Scholar
  50. 50.
    Hayat T, Ali S, Alsaedi A, Alsulami HH. Influence of thermal radiation and Joule heating in the Eyring–Powell fluid flow with the Soret and Dufour effects. J Appl Mech Tech Phys. 2016;57:1051–60.CrossRefGoogle Scholar
  51. 51.
    Hayat T, Ali S, Awis M, Alsedi A. Joule heating effect on MHD flow of Burger’s fluid. Heat Transf Res. 2016;47:1083–92.CrossRefGoogle Scholar
  52. 52.
    Gorla RSR, Sidawi I. Free convection on a vertical stretching surface with suction and blowing. Appl Sci Res. 1994;52:247–57.CrossRefGoogle Scholar
  53. 53.
    Hayat T, Khan SA, Khan MI, Alsaedi A. Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid. Phys Scr. 2019;94:085001.CrossRefGoogle Scholar
  54. 54.
    Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf. 2010;53:2477–83.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Fawaz E. Alsaadi
    • 1
  • Ikram Ullah
    • 4
    Email author
  • T. Hayat
    • 2
    • 3
  • Fuad E. Alsaadi
    • 3
  1. 1.Department of Information Technology, Faculty of Computing and Information TechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of MathematicsQuaid-I-Azam UniversityIslamabadPakistan
  3. 3.Department of Electrical and Computer Engineering, Faculty of EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Department of Humanities, FAST NUCES Peshawar CampusKhyber Pakhtunkhwa (KPK)Pakistan

Personalised recommendations