Thermal and structural analysis of Ni50Mn50−xInx shape memory alloys

  • Rim Ameur
  • Mahmoud Chemingui
  • Tarek BachagaEmail author
  • Virgil Optasanu
  • Joan Joseph Suñol
  • Mohamed Khitouni


In the present study, the Ni50Mn50−xInx (x = 12, 13 and 14 at.%) shape memory alloys were obtained by rapid solidification. The martensitic transformation and the solidification structures of these alloys were carried out by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, respectively. The experimental results showed that the crystalline structure of martensite in the In12 and In13 ribbons was identified as a 10M monoclinic structure, although the austenite has a cubic L21 structure for the In14 alloy. The martensitic transformation start temperature Ms decreases progressively with the increasing In content. The Ni content is mainly responsible for the adjustment in martensite transformation behavior in these shape memory alloys. Finally, the control of the valence electron by atom (e/a) determines the practical properties of these alloys at room temperature and makes it possible to create the alloys that can be candidates for various uses, such as sensors, refrigerants for magnetic refrigeration and actuators.


Shape memory alloys Rapid solidification Martensitic transformation Microstructure 



This study was supported by financial funds from the MAT2013-47231-C2-2-P and Mat2016-75967-P projects. The authors would like to express their gratitude to Xavier Fontrodona Gubau for her XRD support. They would also like to thank Professor H. Wassim from the English Language Unit at the Faculty of Sciences of Sfax (Tunisia) for his constructive language polishing and editing services.


  1. 1.
    Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2007;7575:104414.CrossRefGoogle Scholar
  2. 2.
    Bachaga T, Daly R, Escoda L, Sunol JJ, Khitouni M. Influence of chemical composition on martensitic transformation of MnNiIn shape memory alloys. J Therm Anal Calorim. 2015;122:167–73.CrossRefGoogle Scholar
  3. 3.
    Sunol JJ, Escoda L, Hernando B, Sanchez LIamazares JL, Prida VM. Structural behavior of Ni–Mn–(In, Sn) Heusler melt spun ribbons. J ESOMAT. 2009. Scholar
  4. 4.
    Bachaga T, Rekik H, Krifa M, Sunol JJ, Khitouni M. Investigation of the enthalpy/entropy variation and structure of Ni–Mn–Sn (Co, In) melt-spun alloys. J Therm Anal Calorim. 2016;126:1463–8.CrossRefGoogle Scholar
  5. 5.
    Yu G, Xu Y, Liu Z, Qiu H, Zhu Z, Huang X, Pan L. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34:527.CrossRefGoogle Scholar
  6. 6.
    Aksoy S, Krenke T, Acet M, Wassermann EF, Moya X, Manosa L, Planes A. Tailoring magnetic and magnetocaloric properties of martensitic transitions in ferromagnetic Heusler alloys. Appl Phys Lett. 2007;91:241916.CrossRefGoogle Scholar
  7. 7.
    Sharma VK, Chattopadhyay MK, Shaeb KHB, Chouhan A, Roy SB. Large magnetoresistance in Ni50Mn34In16 alloy. Appl Phys Lett. 2006;89:222509.CrossRefGoogle Scholar
  8. 8.
    Arjun KP, Mahmud K, Bhoj RG, Shane S, Igor D, Naushad A. Exchange bias in bulk Ni–Mn–In-based Heusler alloys. J Magn Magn Mater. 2009;321:963–5.CrossRefGoogle Scholar
  9. 9.
    Dubenko I, Ali N, Stadler S, Zhukov A, Zhukova V, Hernando B, Prida V, Prudnikov V, Ganshina E, Granovsky A. Magnetic, magnetocaloric, magneto-transport, and magneto-optical properties of Ni–Mn–In-based Heusler alloys: bulk, ribbons, and micro-wires, chapter 2 in the hard-cover book. In: Zhukov A, editor. Novel functional magnetic materials: fundamentals and applications, Springer series in materials science, vol. 231. Springer: Berlin; 2016. p. 41–83.CrossRefGoogle Scholar
  10. 10.
    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S. Magnetic field-induced shape recovery by reverse phase transformation. Nature. 2006;439:957.CrossRefGoogle Scholar
  11. 11.
    Dubenko I, Khan M, Pathak AK, Bhoj R, Gautam SS, Naushad A. Magnetocaloric effects in Ni–Mn–X based Heusler alloys with X = Ga, Sb, and In. J Magn Magn Mater. 2009;321:754–7.CrossRefGoogle Scholar
  12. 12.
    Krenke T, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73:174413.CrossRefGoogle Scholar
  13. 13.
    Sànchez-Llamazares JL, Sanchez T, Santos JD, Perèz MJ, Sanchez ML, Hernando B. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett. 2008;92:012513.CrossRefGoogle Scholar
  14. 14.
    Sànchez-Llamazares JL, Hernando B, Garcıa C, Gonzalez J, Escoda L, Suñol JJ. Martensitic transformation in Ni50.4Mn34.9In14.7 melt spun ribbons. J Phys D: Appl Phys. 2008;42:045002.CrossRefGoogle Scholar
  15. 15.
    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85:4358.CrossRefGoogle Scholar
  16. 16.
    Coll R, Saurina J, Escoda L, Suñol JJ. Thermal analysis of Mn50Ni50−x(Sn, In)x Heusler shape memory alloys. J Therm Anal Calorim. 2018;134:1277.CrossRefGoogle Scholar
  17. 17.
    Krenke T, Duman E, Acet M, Moya X, Manosa L, Planes A. Effect of Co and Fe on the inverse magnetocaloric properties of Ni–Mn–Sn. J Appl Phys. 2007;102:033903.CrossRefGoogle Scholar
  18. 18.
    Kök M, Durğun SB, Özen E. Thermal analysis, crystal structure and magnetic properties of Cr-doped Ni–Mn–Sn high-temperature magnetic shape memory alloys. J Therm Anal Calorim. 2019;136:1147.CrossRefGoogle Scholar
  19. 19.
    Aydogdu Y, Turabi A, Aydogdu A, Kok M, Yakinci Z, Karaca H. The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys. J Therm Anal Calorim. 2016;126:399–406.CrossRefGoogle Scholar
  20. 20.
    Moya X, Manosa L, Planes A, Krenke T, Acet M, Wassermann EF. Lattice dynamics of Ni–Mn–Al Heusler alloys. J Mater Sci Eng: A. 2006;481–482:227–30.Google Scholar
  21. 21.
    Yuhasz WM, Schlagel DL, Xing Q, McCallum RW, Lograsso TA. Metastability of ferromagnetic Ni–Mn–Sn Heusler alloys. J Alloy Compd. 2010;492:681–4.CrossRefGoogle Scholar
  22. 22.
    Krenke T, Moya X, Aksoy S, Acet M, Entel P, Manosa LL, Planes A, Elermanc Y, Yuceld A, Wassermann EF. Electronic aspects of the martensitic transition in Ni–Mn based Heusler alloys. J Magn Magn Mater. 2007;310:2788–9.CrossRefGoogle Scholar
  23. 23.
    Lutterotti L. Maud: a Rietveld analysis program designed for the internet and experiment integration. Acta Cryst. 2000;A56:s54.CrossRefGoogle Scholar
  24. 24.
    Petrisek V, Dusek MJ. The crystallographic computing system. Prague: Institute of Physics; 2000.Google Scholar
  25. 25.
    González L, García J, Nazmunnahar M, Rosa WO, Escoda L, Suñol JJ, Prida VM, Koledov VV, Shavrov VG, Hernando B. Magnetic field and annealing influence on the martensitic transition in Ni45.8Mn42.6In11.6 shape memory alloy ribbons. Solid Stat Phenom. 2012;190:307.CrossRefGoogle Scholar
  26. 26.
    González L, González-Alonso D, Rosa WO, Caballero-Flores R, Suñol JJ, González J, Hernando B. Magneto structural phase transition in off-stoichiometric Ni–Mn–In Heusler alloy ribbons with low In content. J Magn Magn Mater. 2015;383:190–5.CrossRefGoogle Scholar
  27. 27.
    Bachaga T, Daly R, Sunol JJ, Saurina J, Escoda L, Legarreta LG, Hernando B, Khitouni M. Effects of Co additions on the martensitic transformation and magnetic properties of Ni–Mn–Sn shape memory alloys. J Supercond Nov Magn. 2015;8:3087–92.CrossRefGoogle Scholar
  28. 28.
    Coll R, Escoda L, Saurina J, Sànchez-Llamazares JL, Hernando B, Suñol JJ. Martensitic transformation in Mn–Ni–Sn Heusler alloys. J Therm Anal Calorim. 2010;99:905–9.CrossRefGoogle Scholar
  29. 29.
    Chernenko VA, Cesari E, Pons J, Seguı C. Phase transformations in rapidly quenched Ni–Mn–Ga alloys. J Mater Res. 2000;15:1496–504.CrossRefGoogle Scholar
  30. 30.
    Kaufman L, Hullert M. Thermodynamics of martensite transformation. In: Olson GB, Owen WS, editors. Martensite. ASM International: Cambridge; 1992. p. 41–58.Google Scholar
  31. 31.
    Bachaga T, Daly R, Khitouni M, Escoda L, Saurina J, Suñol JJ. Thermal and structural analysis of Mn49.3Ni43.7Sn7.0 Heusler alloy ribbons. Entropy. 2015;17:646–57.CrossRefGoogle Scholar
  32. 32.
    Santamarta R, Cesari E, Font J, Muntasell J, Pons J, Dutkiewicz J. Effect of atomic order on the martensitic transformation of Ni–Fe–Ga alloys. Script Mater. 2006;54:1985–9.CrossRefGoogle Scholar
  33. 33.
    Kreissl M, Neumann KU, Stephens T, Ziebeck KRA. The influence of atomic order on the magnetic and structural properties of the ferromagnetic shape memory compound Ni2MnGa. J Phys: Condens Matter. 2003;15:3831–9.Google Scholar
  34. 34.
    Khovailo VV, Oikawa K, Abe T, Tagaki T. Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2+xMn1−xGa. J Appl Phys. 2003;93:8483–5.CrossRefGoogle Scholar
  35. 35.
    Wu SK, Yang ST. Effect of composition on transformation temperatures of Ni–Mn–Ga shape memory alloys. Mater Lett. 2003;57:4291–6.CrossRefGoogle Scholar
  36. 36.
    Rekik H, Krifa M, Bachaga T, Escoda L, Sunol JJ, Khitouni M, Chmingui M. Structural and martensitic transformation of MnNiSn shape memory alloys. Int J Adv Manuf Technol. 2016;90:291–8.CrossRefGoogle Scholar
  37. 37.
    Obrado E, Manosa L, Planes A. Stability of the bcc phase of Cu–Al–Mn shape-memory alloys. Phys Rev B. 2006;73:174413.CrossRefGoogle Scholar
  38. 38.
    Deltell A, Escoda L, Saurina J, Suñol JJ. Martensitic transformation in Ni–Mn–Sn–Co Heusler alloys. Metals. 2015;5:695–705.CrossRefGoogle Scholar
  39. 39.
    Yan H, Zhang Y, Xu N, Anatoliy S, Heinz-Gunter B, Claude E, Xiang Z, Liang Z. Crystal structure determination of in-commensurate modulated martensite in Ni–Mn–In Heusler alloys. Act Mater. 2015;88:375–88.CrossRefGoogle Scholar
  40. 40.
    Palacios E, Bartolomé J, Wang G, Burriel R, Skokov K, Taskaev S, Khovilo V. Analysis of the magnetocaloric effect in Heusler alloys: study of Ni50CoMn36Sn13 by calorimetric techniques. Entropy. 2015;17:1236–52.CrossRefGoogle Scholar
  41. 41.
    Shamberger PJ, Ohuchi FS. Hysteresis of the martensitic phase transition in magnetocaloric effect of Ni–Mn–Sn alloys. Phys Rev B. 2009;79:14440.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Rim Ameur
    • 1
  • Mahmoud Chemingui
    • 1
  • Tarek Bachaga
    • 1
    • 2
    Email author
  • Virgil Optasanu
    • 3
  • Joan Joseph Suñol
    • 4
  • Mohamed Khitouni
    • 1
  1. 1.Laboratory of Inorganic Chemistry, UR 11-ES-73University of Sfax, FssSfaxTunisia
  2. 2.School of Computer Sciences and TechnologyUniversity of QingdaoQingdaoChina
  3. 3.ICB, UMR 6303, CNRSUniversity of Bourgogne FranceDijon CedexFrance
  4. 4.Departamento de FísicaUniversitat de GironaGironaSpain

Personalised recommendations