Nickel selenate: a deep and efficient characterization

  • Caroline Gaglieri
  • Rafael T. Alarcon
  • Aniele de Moura
  • Flávio J. CairesEmail author


This work aims to determine the nickel selenate hexahydrate thermal behavior by simultaneous thermogravimetry–differential thermal analysis and differential scanning calorimetry and characterize its thermal intermediates decomposition. Moreover, at 25 °C, this material is a green-colored compound; however, with the temperature increase (until 420 °C), a color change from yellowish green to yellowish orange and finally to yellow was observed. This characteristic is due to the water molecules release, changing the ultraviolet–visible/near-infrared spectroscopy analysis absorption spectra and consequently modifying the crystal structure, as confirmed by X-ray powder diffraction, and resulting in visual changes in photo-DSC. The new data are essential to determine the better conditions to use this material as a precursor in synthesis and also to use it in future applications.


Characterization Thermal properties Color change Nickel selenate hexahydrate 



The authors wish to thank CAPES (grant 024/2012 Pro-equipment), CNPq (grant No. 421469/2016-1) and FAPESP (grants No. 2017/14936-9, No. 2018/03460-6, No. 2018/12463-9 and No. 2018/24378-6) for financial support.

Supplementary material

Photo-DSC video of nickel selenate hexahydrate (MP4 1827 kb)

10973_2019_8623_MOESM2_ESM.tif (84 kb)
MIR spectra of H2SeO4 (a), NiSeO4·6H2O (b), and NiSeO4·0.5H2O (c) (TIFF 83 kb)


  1. 1.
    Mohseni M, Bastani S, Jannesari A. Effects of silane precursors on curing behavior of UV-curable hybrid coatings. J Therm Anal Calorim. 2015;119:515–26.CrossRefGoogle Scholar
  2. 2.
    Predoana L, Jitianu A, Preda S, Malic B, Zaharescu M. Thermal behavior of Li–Co–citric acid water-based gels as precursors for LiCoO2 powders. J Therm Anal Calorim. 2015;119:145–53.CrossRefGoogle Scholar
  3. 3.
    Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z. Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature. Catal Sci Technol. 2015;5:3166–81.CrossRefGoogle Scholar
  4. 4.
    Shah AT, Ain Q, Chaudhry AA, Khan AF, Iqbal B, Ahmad S, Siddiqi SA, Rehman I. A study of the effect of precursors on physical and biological properties of mesoporous bioactive glass. J Mater Sci. 2015;50:1794–804.CrossRefGoogle Scholar
  5. 5.
    Sotelo A, Torres MA, Rasekh S, Madre MA, Diez JC. Effect of precursors on the microstructure and electrical properties of Bi2Ba2Co2Ox. J Aust Soc. 2017;53:583–90.Google Scholar
  6. 6.
    Boningari T, Inturi SNR, Manousiouthakis VI, Smirniots PG. Facile synthesis of flame spray pyrolysis-derived magnesium oxide nanoparticles for CO2 sorption: effect of precursors, morphology, and structural properties. Ind Eng Chem Res. 2018;57:9054–61.CrossRefGoogle Scholar
  7. 7.
    Hoa ND, Hung CM, Duy NV, Hieu NV. Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gas-sensing performance. Sens Actuator B Chem. 2018;273:784–93.CrossRefGoogle Scholar
  8. 8.
    Joshi S, Kamble VB, Kumar M, Umarji AM. Nickel substitution induced effect on gas sensing properties of cobalt ferrite nanoparticles. J Alloys Compd. 2016;654:460–6.CrossRefGoogle Scholar
  9. 9.
    Kumar ER, Reddy PSP, Devi GS, Sathiyaraj S. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M = Zn, Cu, Ni, and Co). J Magn Magn Mater. 2016;398:81–288.Google Scholar
  10. 10.
    Zhu W, Yue X, Zhang W, Yu S, Zhang Y, Wang J, Wang J. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem Commun. 2016;52:1486–9.CrossRefGoogle Scholar
  11. 11.
    Tonezzer M, Dang LTT, Tran HQ, Iannotta S. Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor. Sens Actuator B Chem. 2018;255:2785–93.CrossRefGoogle Scholar
  12. 12.
    Menezes PW, Panda C, Loos S, Bunchei-Bruns F, Walter C, Schwarze M, Deng X, Dau H, Driess M. A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy Environ. 2018;11:1287–98.CrossRefGoogle Scholar
  13. 13.
    Ghayour H, Abdellahi M, Ozada N, Jabbrzare S, Khandan A. Hyperthermia application of zinc doped nickel ferrite nanoparticles. J Phys Chem Solids. 2017;111:464–72.CrossRefGoogle Scholar
  14. 14.
    Nkhili NL, Rekik W, Naili H. A new nickel selenate templated by piperazine: chemical, preparation, crystal structure, thermal decomposition, and magnetic properties. J Therm Anal Calorim. 2014;145:931–6.Google Scholar
  15. 15.
    Dridge EJ, Butler CS. Thermostable properties pf the periplasmic selenite reductase from Thauera selenatis. Biochimie. 2010;92:268–1273.CrossRefGoogle Scholar
  16. 16.
    Watts CA. Selenate reduction Enterobacter cloacae SLD 1a-1 is catalyzed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol Lett. 2003;2003(228):273–9.CrossRefGoogle Scholar
  17. 17.
    Robinson PR, Arun V, Manju S, Aniz CU, Yusuff KKM. Oxidation kinetics of nickel nano crystallites obtained by controlled thermolysis of diaquabis(ethylenediamine)nickel(II) nitrate. J Therm Anal Calorim. 2010;100:733–40.CrossRefGoogle Scholar
  18. 18.
    Benelli C, di Viara M, Noccioli G, Sacconi L. Synthesis, properties, and characterization of sulfato and selenato complexes of cobalt(II), nickel(II), with 1,1-1-tris(diphenylphosphinomethyl)ethane (p3). Crystal and molecular structures of Co(p3)SO4 and Ni(p3)SeO4. Inorg Chem. 1977;16:182–7.CrossRefGoogle Scholar
  19. 19.
    Pardasani RT, Pardasani P. Magnetic properties of nickel(II) selenate complex with 2-aminoethanol. In: Gupta A, editor. magnetic properties of paramagnetic compounds. Molecules and radicals, vol. 31H. Berlin: Springer; 2017.Google Scholar
  20. 20.
    Paciolla C, de Leonardis S, Dipierro S. Effects pf selenite and selenate on the antioxidant systems in Senecio scandens L. Plant Biosyst. 2011;145:253–9.CrossRefGoogle Scholar
  21. 21.
    Yankova R, Genieva S. Crystal structure and IR investigation of double salt Cs2Ni(SeO4)2·4H2O. Chem Data Collect. 2019;21:100234–40.CrossRefGoogle Scholar
  22. 22.
    Karadjova V, Stoilova D. Infrared spectroscopy study of Rb2M(XO4)2·6H2O (M = Mg, Co, Ni, Cu, Zn; X = S, Se) and SO4 2− guest ions included in rubidium Tutton selenates. J Mol Struct. 2013;1050:204–10.CrossRefGoogle Scholar
  23. 23.
    Driscoll LL, Kemdrick E, Knight KS, Wright AJ, Slater PR. Investigation into the dehydration of selenate deped Na2M(SO4)2·2H2O (M = Mn, Fe, Co, and Ni): stabilization of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co, and Ni): throught selenate incorporation. J Solid State Chem. 2018;258:64–71.CrossRefGoogle Scholar
  24. 24.
    Gaudon M, Deniard P, Demourgues A, Thiry A, Carbonera C, Nestour A, Largeteau A, Létard J, Jobic S. Unprecedent, “one-finger-push”-induced phase transition with a drastic color change in an inorganic material. Adv Mater. 2007;19:3517–9.CrossRefGoogle Scholar
  25. 25.
    Vik M, Periyasamy AP. Chromic materials: fundamental, measurements, and applications. Oakville: Apple Academic Press Inc; 2019.Google Scholar
  26. 26.
    Dohnalova Z, Sulcova P, Belina P, Vleek M, Gorodylova N. Brown pigments based on perovskite structure BiFeO3-δ. J Therm Anal Calorim. 2018;133:421–8.CrossRefGoogle Scholar
  27. 27.
    Sharat A, Hassan HMA, El-Shatat MF, El Shahawy O, Awual MR. Visual nickel(II) ions treatment in petroleum samples using a mesoporous composite adsorbent. Chem Eng J. 2018;334:957–67.CrossRefGoogle Scholar
  28. 28.
    Sun J, Yang X, Yang G-Y, Zhang J. Bipyridinium derivative-based coordination polymers: from synthesis to materials applications. Coord Chem Rev. 2019;378:533–60.CrossRefGoogle Scholar
  29. 29.
    Tanaka R, Okazawa A, Konaka H, Sasaki A, Kojima N, Matsushita N. Unique hydration/dehydration-induced vapochromic behavior of a charge-transfer salt comprising viologen andhexacyanidoferrate(II). Inorg Chem. 2018;57:2209–17.CrossRefPubMedGoogle Scholar
  30. 30.
    Kahani SA, Abdevali F. Mechanochemical synthesis and characterization of a nickel(II) complex as a reversible thermochromic nanostructure. RSC Adv. 2016;6:5116–22.CrossRefGoogle Scholar
  31. 31.
    Gilbertson LI, King GB. Inorganic syntheses, vol. III. New York: McGraw-Hill; 1950.Google Scholar
  32. 32.
    Jeffery GH, Basset J, Mendham J, Denney RC. Vogel’s textbook of quantitative chemical analysis. 4th ed. New York: Logman Scientific & Technical; 1989.Google Scholar
  33. 33.
    Giolito I, Ionashiro M. Thermal decomposition of magnesium and calcium selenates. Thermochim Acta. 1989;145:367–71.CrossRefGoogle Scholar
  34. 34.
    Henmi H, Mori M, Hirayama T. Influence of the self-generated and controlled atmosphere on the thermal decomposition of basic nickel carbonate, NiCO3·2Ni(OH)2·4H2O. Thermochim Acta. 1986;104:101–9.CrossRefGoogle Scholar
  35. 35.
    Mansour SAA. Spectroscopic and microscopic investigations of the thermal decomposition of nickel oxysalts. Part 1. Tetrahydroxy nickel carbonate. Thermochim Acta. 1993;228:155–71.CrossRefGoogle Scholar
  36. 36.
    Tomaszewicz E, Kotfica M. Mechanism and kinetics of thermal decomposition of nickel(II) sulfate(VI) hexahydrate. J Therm Anal Calorim. 2004;77:25–31.CrossRefGoogle Scholar
  37. 37.
    Taguchi H. Relationship between crystal structure and electrical properties of murdochite-type Ni6+2xMn1-xO8. Solid State Commun. 1998;108:635–9.CrossRefGoogle Scholar
  38. 38.
    Kim J, Homma I. Synthesis and proton conducting properties of zirconia ridged hydrocarbon/phosphotungstic acid hybrid materials. Eletrochim Acta. 2004;49:3179–83.CrossRefGoogle Scholar
  39. 39.
    Wickleder MS, Buchner O, Wickleder C, Sheik S, Brunklaus G, Eckert H. Au2(SeO3)2: synthesis and characterization of a new noncentrosymmetric selenite-selenate. Inorg Chem. 2004;43:5860–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Rajagopal R, Ajgaonkar V. Synthesis, characterization, and thermal decomposition of double rare earth monomethyl ammonium selenates. Monatsh Chem. 2002;133:1387–95.CrossRefGoogle Scholar
  41. 41.
    Trivedi MK, Sethi KK, Panda P, Jana S. Physicochemical, thermal and spectroscopic characterization of sodium selenate using SRD, PSD, DSC, TGA/DTG, UV–vis and FT-IR. Pharma J. 2017;21:311–8.Google Scholar
  42. 42.
    Atkins PW, Shriver DF, Overton TL, Rourke JP, Weller MT, Armstrong FA. Inorganic chemistry. 4th ed. Oxford: Oxford University Press; 2006.Google Scholar
  43. 43.
    Miessler GL, Fischer PJ, Tarr DA. Inorganic Chemistry. 5th ed. Boston: Pearson; 2014.Google Scholar
  44. 44.
    Triest M, Bussière G, Bélisle H, Reber C. Why does the middle band in the absorption spectrum of Ni(H2O)62+ have two maxima? Chem Educ. 2000;77:670.CrossRefGoogle Scholar
  45. 45.
    de Andrade TM, Mariani FQ, Nunes Júnior CV, Dalpasquale M, Danczunk M, Anaissi FJ. Compreendendo as propriedades (estrutural, espectroscópica, calorimétrica e térmica) de sais de níquel. Rev Mater 2018; 23.Google Scholar
  46. 46.
    Nguyen VNH, Amal R, Beydoum D. Photocatalytic reduction of selenium ions using different TiO2 photocatalysts. Chem Eng Sci. 2005;60:5759–69.CrossRefGoogle Scholar
  47. 47.
    Snyman HC, Pistorius CWFT. Crystallographic data for NiSeO4 ·6H2O and CaSeO4 ·6H2O. Zeitschriftfür Kristallographie. 1964;119:465–7.CrossRefGoogle Scholar
  48. 48.
    Stoilova D, Koleva V. TG, DTA, DSC and X-ray powder diffraction studies on new nickel selenate hydrates. Thermochim Acta. 1996;290:85–91.CrossRefGoogle Scholar
  49. 49.
    Vlaev LT, Genieva SD, Georgieva V. Study of the crystallization fields of nickel(II) selenites in the system NiSeO3–SeO2–H2O. J Therm Anal Calorim. 2006;86:449–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.UNESP-São Paulo State UniversityChemistry Department, School of SciencesBauruBrazil
  2. 2.UNESP-São Paulo State UniversityInstitute of ChemistryAraraquaraBrazil

Personalised recommendations