Journal of Thermal Analysis and Calorimetry

, Volume 138, Issue 3, pp 1879–1886 | Cite as

Thermal analysis and multi-analytical comparison of samples of Neolithic ceramics from Dnepr–Dvina and Low Don regions

  • Irina A. ZverevaEmail author
  • Viktor M. Kuznetsov
  • Yuriy M. Zhukov
  • Andrey N. Mazurkevich
  • Ekaterina V. Dolbunova


Two kinds of samples of Early and Late Neolithic ceramic sherds of pots from excavations of sites located in Dnepr–Dvina and Low Don region (Serteya II and Rakushechny Yar) were investigated for multi-analytical comparison. The methods include thermogravimetric analysis, X-ray powder diffraction, X-ray photoelectron spectroscopy and method of standard contact porosimetry. The pottery manufactured in Serteya II and Rakushechny Yar has different clay sources, but close mineral composition. Inner sides of sherds are less thermally durable as a result of the contact with cooking meal or boiling water in ancient times: They lose more mass during thermogravimetric measurements. At the same time, the minerals in outer sides of the samples are partly destroyed because of contact with fire in the past. According to differential scanning calorimetry curves, there are thermal effects above 1000 °C in all sherds due to mullite formation. There are organic C–F bonds and sharp endothermic peaks at 600–750 °C in samples from Serteya II site. In addition to elevated level of nitrogen and phosphorus and carbon black layer on the inner side, it allows to propose that the pot from Serteya II was used for cooking. The sherds from both sites have close overall porosity, but in case of Serteya II size of mesopore is more isotropic.


Early–Late Neolithic ceramic sherds Thermal analysis X-ray methods Porosity 



Research was conducted using resources provided by the Centre of Thermal Analysis and Calorimetry, Centre of Physical methods of Surface Investigation, and the Centre for X-ray Diffraction Studies of Research Park of Saint Petersburg State University.


  1. 1.
    Annamalai GR, Ravisankar R, Rajalakshmi A, Chandrasekaran A, Rajan K. Spectroscopic characterization of recently excavated archaeological potsherds from Tamilnadu, India with multi-analytical approach. Spectrochim Acta A Mol Biomol Spectrosc. 2014;133:112–8.CrossRefGoogle Scholar
  2. 2.
    Drebushchak VA, Mylnikova LN, Drebushchak TN. Thermoanalytical investigations of ancient pottery. J Therm Anal Calorim. 2018;133:135–76.CrossRefGoogle Scholar
  3. 3.
    Drebushchak VA, Mylnikova LN, Molodin VI. Thermogravimetric investigation of ancient pottery. Metrological analysis of sampling. J Therm Anal Calorim. 2007;90:73–9.CrossRefGoogle Scholar
  4. 4.
    Drebushchak VA, Mylnikova LN, Drebushchak TN. The mass-loss diagram for the ancient ceramics. J Therm Anal Calorim. 2011;104:459–66.CrossRefGoogle Scholar
  5. 5.
    Ponta O, Vulpoi A, Zirra V, Simon S. Structural and compositional investigation of ancient ceramics from a fortified settlement in south-western Romania. J Mol Struct. 2016;1122:157–63.CrossRefGoogle Scholar
  6. 6.
    Issi A, Kara A, Alp A. An investigation of Hellenistic period pottery production technology from Harabebezikan/Turkey. Ceram Int. 2011;37:2575–82.CrossRefGoogle Scholar
  7. 7.
    Bayazit M, Isik I, Issi A, Genc E. Spectroscopic and thermal techniques for the characterization of the first millennium AD potteries from Kuriki-Turkey. Ceram Int. 2014;40:14769–79.CrossRefGoogle Scholar
  8. 8.
    Ribeiro RP, Kobelnik M, Parizotto JCV. Mineralogical and thermal characterization of soft rock from Campinas, Brazil. J Therm Anal Calorim. 2019;136:483–92.CrossRefGoogle Scholar
  9. 9.
    Nagy E, Guttmann M, Molnar-Kovacs Z, Barabas R. Multi-method analysis of bronze age ceramics from Satu-Mare County, Romania. Stud Univ Babes-Bol Chem. 2015;4:21–34.Google Scholar
  10. 10.
    Singh P, Sharma S. Thermal and spectroscopic characterization of archeological pottery from Ambari, Assam. J Archaeol Sci Rep. 2016;5:557–63.Google Scholar
  11. 11.
    Perez-Rodriguez JL, Perez-Maqueda R, Franquelo ML, Duran A. Study of the thermal decomposition of historical metal threads. J Therm Anal Calorim. 2018;134:15–22.CrossRefGoogle Scholar
  12. 12.
    Klouzkova A, Kavanova M, Kohoutkova M, Zemenova P, Dragoun Z. Identification of causes of degradation of Gothic ceramic tiles by thermal analyses. J Therm Anal Calorim. 2016;125:1311–8.CrossRefGoogle Scholar
  13. 13.
    Rotaru A, Lupascu T, Paladi F. Thermal analysis and calorimetry in the study of materials and processes for fundamental sciences and various applications in Central and Eastern Europe. J Therm Anal Calorim. 2018;134:1–5.CrossRefGoogle Scholar
  14. 14.
    Moraru L, Cotoi O, Szendrei F. Euler number: a method for statistical analysis of ancient pottery porosity. Eur J Sci Theol. 2011;7:99–108.Google Scholar
  15. 15.
    Stevenson CM, Gurnick M. Structural collapse in kaolinite, montmorillonite and illite clay and its role in the ceramic rehydroxylation dating of low-fired earthenware. J Archaeol Sci. 2016;69:54–63.CrossRefGoogle Scholar
  16. 16.
    Benea M, Lazarescu V-A, Gorea M. Contribution to the study of suceag pottery, Cluj County, Romania. Stud Univ Babes-Bol Chem. 2016;2:73–8.Google Scholar
  17. 17.
    Bahceli S, Gulec G, Erdogan H, Sogut B. Micro-Raman and FT-IR spectroscopic studies of ceramic sherds from ancient Stratonikeia city at Eskihisar village in West-South Turkey. J Mol Struct. 2016;1106:316–21.CrossRefGoogle Scholar
  18. 18.
    de Soto IS, Gimenez RG, de Soto MR. Roman ceramic pieces from central Spain: visual, textural, chemical, mineraljgical and statistical analysis. Mediter Archaeol Archaeom. 2016;16:237–48.Google Scholar
  19. 19.
    Lamara S, Redaoui D, Sahnoune F, Daheb N. Effect of temperature and magnesia on phase transformation kinetics in stoichiometric and non-stoichiometric cordierite ceramics prepared from kaolinite precursors. J Therm Anal Calorim. 2019;137:11–23.CrossRefGoogle Scholar
  20. 20.
    Dejoie C, Tamura N, Kunz M, Goedeau P, Sciau P. Complementary use of monochromatic and white-beam X-ray micro-diffraction for the investigation of ancient materials. J Appl Crystallogr. 2015;48:1522–33.CrossRefGoogle Scholar
  21. 21.
    Issi A. Estimation of ancient firing technique by the characterization of semi-fused Hellenistic potsherds from Harabebezikan/Turkey. Ceram Int. 2012;38:2375–80.CrossRefGoogle Scholar
  22. 22.
    Lahlil S, Xu J, Li W. Influence of manufacturing parameters on the crackling process of ancient Chinese glazed ceramics. J Cult Herit. 2015;16:401–12.CrossRefGoogle Scholar
  23. 23.
    Liou YS. Multi-technique study of archaeological cord-marked wares decorated with red coatings from Taiwan. J Raman Spectros. 2015;46:133–40.CrossRefGoogle Scholar
  24. 24.
    Maggetti M, Serneels V, Stasch G. Composition and technology of 18th century high magnesia faïences from Fulda. J Archaeol Sci Rep. 2015;2:40–50.Google Scholar
  25. 25.
    Bakolas A, Aggelakopoulou E. Pozzolanic activity of natural pozzolan–lime pastes and physicomechanical characteristics. J Therm Anal Calorim. 2019;135:2953–61.CrossRefGoogle Scholar
  26. 26.
    Perisic N, Maric-Stojanovic M, Andric V, Mioc UB, Damjanovic L. Physicochemical characterisation of pottery from the Vinča culture, Serbia, regarding the firing temperature and decoration techniques. J Serb Chem Soc. 2016;81:1415–26.CrossRefGoogle Scholar
  27. 27.
    Seetha D, Velraj G. Characterization and chemometric analysis of ancient pot sherds trenched from Arpakkam, Tamil Nadu, India. J Appl Res Technol. 2016;14:345–53.CrossRefGoogle Scholar
  28. 28.
    Vieira Ferreira LF, Gonzalez A, Pereira MFC, Santos LF, Casimiro TM, Ferreira DP, Conceicao DS, Ferreira Machado I. Spectroscopy of 16th century Portuguese tin-glazed earthenware produced in the region of Lisbon. Ceram Int. 2015;41:13433–46.CrossRefGoogle Scholar
  29. 29.
    Issi A, Ozcatal M, Kara A, Alp AO. Production technology and provenance study of brittle wares belonging to the late roman period from Harabebezikan/Turkey. Ceram Int. 2017;43:2182–7.CrossRefGoogle Scholar
  30. 30.
    Jiang X, Chen Y, Zhang L, Zhang Z, Ma Q, Wang C, Yang Y. Prototype Doucai porcelain—a special form of ancient Honglvcai in Cizhou kiln, Jin Dynasty (1115–1234 AD), China. Ceram Int. 2017;43:1371–7.CrossRefGoogle Scholar
  31. 31.
    Medeghini L, Fabrizi L, De Vito C, Mignardi S, Nigro L, Gallo E, Fiaccavento C. The ceramic of the “Palace of the Copper Axes” (Khirbet al-Batrawy, Jordan): a palatial special production. Ceram Int. 2016;42:5952–62.CrossRefGoogle Scholar
  32. 32.
    Tempere J-F, Delafosse D. An X-ray photoelectron spectroscopy study on zeolites. Chem Phys Lett. 1975;33:95–8.CrossRefGoogle Scholar
  33. 33.
    Winiecki AM, Suib SL, Occelli ML. X-ray photoelectron spectroscopy investigations of zeolites. Langmuir. 1988;4:512–8.CrossRefGoogle Scholar
  34. 34.
    Kulkova M, Mazurkevich A, Dolbunova E, Regert M, Mazuy A, Nesterov E, Sinai M. Late Neolithic subsistence strategy and reservoir effects in 14C dating of artifacrs at the pile-dwelling site Serteya II (NW Russia). Radiocarbon. 2015;57:611–23.CrossRefGoogle Scholar
  35. 35.
    Volfkovich YM, Bagotzky VS, Sosenkin VE, Blinov IA. The standard contact porosimetry. Colloids Surfaces A Physicochem Eng Asp. 2001;187–188:349–65.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint PetersburgRussia
  2. 2.The State Hermitage MuseumSaint PetersburgRussia

Personalised recommendations